Abstract:
An electrically programmable and erasable memory includes memory cells, with each memory cell including a floating gate transistor and an access transistor. The floating gate transistor has a first terminal connected to the access transistor. The memory includes circuitry for respectively applying during an erasing phase a first signal, and a second signal on the control gate and on a second terminal of the floating gate transistors of the memory cells to be erased. The circuitry also applies to the gates of the corresponding access transistors of the memory cells to be erased a signal having a voltage that is different from a voltage of the first signal and has a low or zero potential difference with respect to a voltage of the second signal. The memory is protected against the effects from a breakdown of the gate oxide of an access transistor.
Abstract:
The method controls, in a feedback mode, a common collector or common drain amplifier, biased with a voltage applied on a bias node produced by a biasing circuit that generates a temperature compensated reference voltage from which the bias voltage applied on the bias node of the amplifier is derived. The quiescent voltage on the output node of the amplifier is made substantially independent from temperature by sensing the quiescent voltage on the output node, and adjusting the voltage applied on the bias node of the amplifier based upon the difference between the reference voltage and the sensed quiescent voltage for maintaining it constant.
Abstract:
A variable attenuation network of an input voltage on an input node produces an attenuated voltage on an output node of the network, and includes a voltage divider with multiple-taps that are selectable for producing the attenuated voltage from a voltage applied on the terminals of the voltage divider. The attenuation network produces an output voltage with an attenuation ratio that is determined with at least twice the resolution of the voltage divider, because it includes at least one resistor that may be shorted by a low impedance by-pass line controlled by a switch and alternatively connected between the selected intermediate tap or any one of the two terminals of the voltage divider and the output node of the variable attenuation network, the input node of the attenuation network or a common ground node, respectively. By using more than one shortable resistor, multiple levels of resolution may be obtained.
Abstract:
A smart card reader includes a housing for receiving a smart card, a microprocessor, and a connector for connecting the microprocessor to the received smart card for establishing communications therebetween. A voltage source provides a power supply voltage to the microprocessor based upon the smart card being received in the housing. The smart card reader further includes a first switch interposed between the voltage source and a power supply terminal of the microprocessor. The first switch is closed when the received smart card is at an end of travel in the housing so that the power supply voltage is provided to the microprocessor, and is opened when the received smart card is no longer at the end of travel in the housing so that the power supply voltage is not provided to the microprocessor.
Abstract:
A variable-gain amplifier with a differential input and differential output, including an attenuator block, receiving an input voltage and providing, on several outputs, voltages, each of which is equal to the attenuated input voltage; differential transconductor elements, each having a first input connected to a respective output of the attenuator block, and generating first and second positive currents and first and second negative currents; a current source assembly adapted to controlling the transconductance of each differential transconductor element according to an analog control signal; and an output block converting first and second input currents into a differential output voltage and providing a second input of each differential transconductor element with a feedback voltage depending on the output voltage.
Abstract:
A method for operating a watchdog timer associated with a microcontroller that generates refresh commands for the watchdog timer is provided. The refresh commands are separated by a time interval receiving the refresh commands by the watchdog timer, and generating a microcontroller reset command by the watchdog timer when a time interval separating successively received refresh commands is not within the predetermined range. In particular, the generating includes staring a refresh countdown on each receipt of a refresh command by the watchdog timer. A reset countdown is started if the refresh countdown has timed out, and if the refresh countdown has not timed out when a next refresh command is received, then the next refresh command does not restart the reset countdown. The microcontroller reset command is generated if the reset countdown has timed out.
Abstract:
A power on reset circuit (POR) includes a first reset circuit for delivering a first reset signal when a supply voltage of the POR circuit is between a first low threshold and a first high threshold, and a second reset circuit for delivering a second reset signal when the supply voltage is between a second low threshold and a second high threshold. The second high threshold is less than the first high threshold. The POR circuit further includes at least one electrically erasable and programmable non-volatile memory cell. A delivery circuit outputs the first reset signal or the second reset based upon whether the at least one electrically erasable and programmable non-volatile memory cell is in an erased or programmed state. The POR circuit has a threshold for outputting the first or second reset signal that is programmable according to the intended application.
Abstract:
A Darlington differential amplifier includes a differential pair of Darlington transistors, with each pair including a first transistor and a second transistor connected in cascade to the first transistor. The first transistor is controlled by an externally generated voltage and drives the second transistor. The first and second transistors each include first and second conducting terminals, with the first conducting terminals being connected together and forming an output node of the amplifier. A first degeneration impedance is connected between the second conduction terminals of the second transistors in the pair of Darlington transistors. A second degeneration impedance is connected between the second conduction terminals of the first transistors in the pair of Darlington transistors for reducing harmonic distortion of the amplifier.
Abstract:
A device for producing a video image sharpness improvement signal (DOC21-DOC22), with black level clipping of an associated video signal, comprises a differential transconductance stage processing the video signal and whose bias currents (Imax) are directly proportional to the active component (ΔV) of the video signal so as to bring about a black level sharpness improvement signal clipping.
Abstract:
A switch arrangement for switching a node between three supply voltages based on two control signals. The switch arrangement includes three circuits for connecting an output node with one of three nodes, each of which is set to a different voltage. The switch arrangement is controlled by six control signals that establish mutually exclusive switching modes and avoid combinational currents. The switch arrangement is also designed to allow the use of MOS transistors having a low nominal voltage, with a value that is lower than the highest voltage to be switched. The switch arrangement is particularly adapted to supply power to non-volatile memory cells.