Abstract:
A device, and a corresponding method of implementation, for SRAM memory information storage are provided. The device is powered by a supply voltage and includes an array of base cells organized in base columns, and at least one mirror column of at least one mirror cell liable to simulate the behavior of the cells in a base column. The device further includes Emulation means, in a mirror column, of the most restricting cell in a base column, Means for varying a mirror power supply voltage for the mirror column, and Means for copying the mirror power supply voltage in the emulated base column.
Abstract:
A random access memory array includes random access memory elements arranged in a rows and columns. The elements of each row have a word line and a write digit line and the elements of each column have a bit line and a write bit line. A first selection circuit/transistor for each row has a first source-drain path coupled in the write digit line and a gate terminal coupled to the word line. A second selection circuit/transistor for each column has a second source-drain path coupling in the write bit line and a gate terminal coupled to the bit line. A first write signal is applied to one word line to actuate the first selection circuit/transistor for the row corresponding to that one word line and cause a write current to flow through the first source-drain path of the actuated first selection circuit/transistor and the corresponding write digit line to write data into certain memory elements in that row. A second write signal is applied to one bit line to actuate the second selection circuit/transistor for the column corresponding to that one bit line and cause a write current to flow through the second source-drain path of the actuated second selection circuit/transistor and the corresponding write bit line to write data into at least one memory element in that column.
Abstract:
The semiconducting memory device comprises a non-volatile programmable and electrically erasable memory cell with a single layer of grid material and comprising a floating grid transistor and a control grid, within an active semiconducting area formed in a region of the substrate and delimited by an isolation region. The layer of grid material EG, FL P2 in which the floating grid FG is made extends integrall above the active area ZA without overlapping part of the isolation region STI, and the transistor is electrically isolated from the control grid CG by PN junctions that will be reverse biased.
Abstract:
A non-volatile memory architecture with a word-based organization includes one selection transistor per word. This selection transistor is used for the selection of the word by the source of the memory cells. In this way, the selection may be done directly by the ouput signals from the address decoders using low voltage. The switching of a high voltage to the gates and the drains of the memory cells is done independently of this selection. This enables the required number of high voltage switches to be reduced.
Abstract:
A high voltage switching device includes a switching circuit for switching a high voltage to an output line and for providing a control signal. The high voltage switching device also includes a switching transistor connected to the switching circuit for switching a low voltage to the output line based upon the control signal. The output signal is controlled by a control circuit that sets up a control loop between the drop in the gate voltage level of the switching transistor and the voltage level of the output line that is controlled by the switching circuit.
Abstract:
Described is an apparatus for improving read and write margins. The apparatus comprises: a sourceline; a first bitline; a column of resistive memory cells, each resistive memory cell of the column coupled at one end to the sourceline and coupled to the first bitline at another end; and a second bitline in parallel to the first bitline, the second bitline to decouple read and write operations on the bitline for the resistive memory cell. Described is also an apparatus which comprises: a sourceline; a bitline; a column of resistive memory cells, each resistive memory cell in the column coupled at one end to the sourceline and coupled to the bitline at another end; and sourceline write drivers coupled to the bitline and the sourceline, wherein the sourceline write drivers are distributed along the column of resistive memory cells.
Abstract:
Described is an apparatus for memory write assist which consumes low power during write assist operation. The apparatus comprises: a power supply node; a device operable to adjust voltage on the power supply node; and a feedback unit coupled to the power supply node, the feedback unit to control the device in response to a voltage level of the voltage on the power supply node.
Abstract:
A method and a system for reading from memory cells in a memory device are provided. In one embodiment, the memory device comprises a first plurality of data lines and a second plurality of data lines, at least one first multiplexer coupled to the first plurality of data lines and at least one low reference line, at least one second multiplexer coupled to the second plurality of data lines and at least one high reference line, at least one third multiplexer coupled to the at least one first multiplexer and the at least one second multiplexer, and a reference memory cell coupled to the at least one third multiplexer and at least one sense amplifier.
Abstract:
A device, and a corresponding method of implementation, for SRAM memory information storage are provided. The device is powered by a supply voltage and includes an array of base cells organized in base columns, and at least one mirror column of at least one mirror cell liable to simulate the behavior of the cells in a base column. The device further includes Emulation means, in a mirror column, of the most restricting cell in a base column, Means for varying a mirror power supply voltage (VDDMMOCK) for the mirror column, and Means for copying the mirror power supply voltage in the emulated base column.
Abstract:
The invention relates to an edge transition detector, and a method of operating an edge transition detector. An integrated circuit includes an edge transition detector for producing an output signal at an output node in response to an input signal. The edge transition detector includes a switch coupled to the output node. The edge transition detector includes a logic device with a first input coupled to the input node and an output coupled to a control terminal of the switch to enable the switch to conduct, thereby effecting a transition of the output signal from a first logic level to a second logic level in response to the input signal. A feedback path is provided from the output node to a second input of the logic device to disable switch conductivity when the output signal completes the logic transition from the first logic level to the second logic level.