Abstract:
A powered sliding device comprises wire cables (21′, 21″) provided between a sliding door (11) and a vehicle body (10), and a power unit (20) for sliding the sliding door when the wire cables are moved by the power of a motor. The power unit is provided in the inner space of the sliding door. The wire cables are composed of the door-opening cable (21′) and the door-closing cable (21″) connected to the power unit at a base end side, respectively. A front end of the door-opening cable is fixed to the vicinity of the rear end of a lower rail (14) after having passed through a lower roller bracket (18) of the sliding door, and the front end of the door-closing cable is fixed to the vicinity of the front end of a center rail (16) after having passed though a center roller bracket (19) of the sliding door.
Abstract:
An apparatus for automatically opening a swinging restroom door is provided. The apparatus comprises an actuator, a control unit, and a power assisted drive mechanism that can be connected to an existing door closing mechanism. The actuator comprises a proximity sensor and further comprises a series of iconic symbols corresponding to predetermined proximity zones. The control unit is in electronic communication with the actuator with which signals are exchanged. The power assisted drive mechanism is in electronic communication with the control unit and can be connected to an existing door closing mechanism wherein the actions of the door closing mechanism are reversed and the door is opened.
Abstract:
An apparatus for automatically opening a swinging restroom door is provided. The apparatus comprises an actuator, a control unit, and a power assisted drive mechanism that can be connected to an existing door closing mechanism. The actuator comprises a proximity sensor and further comprises a series of iconic symbols corresponding to predetermined proximity zones. The control unit is in electronic communication with the actuator with which signals are exchanged. The power assisted drive mechanism is in electronic communication with the control unit and can be connected to an existing door closing mechanism wherein the actions of the door closing mechanism are reversed and the door is opened.
Abstract:
An electromechanical strut using an inline motor coupled to an inline planetary gear that are both mounted in the lower housing. The motor-gear assembly drives a worm gear and nut screw in the upper housing, extending or retracting an extensible shaft. Additionally, a power spring mounted coaxially around the worm gear provides a mechanical counterbalance to the weight of a lift gate on the shaft. As the shaft extends, the power spring uncoils, assisting the motor-gear assembly in raising the lift gate. Retracting the shaft recoils the spring, storing potential energy. Thus, a lower torque motor-gear assembly can be used, reducing the diameter of the lower housing. Preferably, the power spring can also drive the power screw to extend the strut even when the motor-gear assembly is not engaged.
Abstract:
A window displacement mechanism comprising a frame, a motor, at least one elongated curved member having a set of threads thereon, and at least one member having a set of threads rotatably mateable with the set of threads on the elongated curved member so that when the member and the elongated curved member are rotated relative to each other one can displace a window carrying extension.
Abstract:
A gate operator in a first configuration opens and closes a gate that swings about an upstanding pivotal axis. In a second configuration the gate operator opens and closes a gate that extends and retracts along a straight line. A motor-driven wheel extends from the bottom of an open-bottomed enclosure and is perpendicular to the gate in the first configuration and parallel to the gate in the second configuration. The wheel is driven by a reversible DC motor. Turning a jack screw in a first direction increases the bias on an adjustable compression spring so that the weight of the gate is transferred to the wheel and rotation of the jack screw in an opposite direction shifts weight from the wheel to the gate.
Abstract:
Piece of furniture with a movable furniture component, in particular a drawer or door, a drive unit and a device for the mechanical transmission of force from the drive unit to the movable furniture component or the body of the furniture, in particular a pin arranged on a lever that can be powered by the drive unit, for the ejection and/or insertion of the movable furniture component, the device for the mechanical transmission of force (4) being arranged in a guide track (8) for the transmission of tensile and thrust forces.
Abstract:
A cylindrical worm 25 is attached to an output shaft of a motor, a first worm wheel 26 and a second worm wheel 27 are disposed on both the sides of the axial center of the cylindrical worm 25, the first worm wheel 26 and a wire drum are supported by a first support shaft 28, and the second worm wheel 27 and a swing arm are supported by a second support shaft 32. A first clutch is interposed between the first worm wheel 26 and the wire drum, a second clutch is interposed between the second worm wheel 27 and the swing arm, and the swing arm and the wire drum are rotated by controlling the first and second clutches with the motor rotating continuously.
Abstract:
A controller has a plurality of control units that are mutually connected by a communication line and are set at different places of an automobile, each corresponding to a different one of its power windows and serving to control its opening and closing. One of these control units is adapted to transmit a signal, in response to a switch operation, to another of the control units through the communication line to open or close the window corresponding to the latter control unit. When this control unit detects that it has submerged in water, it applies a constant voltage to an interface of the communication line. This prevents communications through the communication line and windows from moving in an unwanted manner.
Abstract:
In a foreign material detector for a sliding door, a pressure sensor is disposed being offset toward a vehicle interior side and a substantial vehicle front side of a hem and being offset toward a substantial vehicle exterior side with respect to a position supported by a bracket as well, in order for the foreign material to be detected, even though a direction of a reaction force effected from a foreign material is tilted and intersected with respect to a moving direction of the sliding door.