Abstract:
The present invention relates to a method of scheduling for an underwater wireless mobile network. Particularly, the present invention relates to a method of scheduling for an underwater wireless mobile network, whereby the method may consider a scheduling method that does not cause collision at a specific time domain, and improve network efficiency by receiving in a sink node a packet in a packet train form in consideration with a transfer velocity of a sound wave and a packet length rather than performing orthogonalization to avoid transmission time overlap at a specific time.
Abstract:
The present invention relates to a method and an apparatus for continuously detecting a hazardous and noxious substance from multiple satellites, and specifically, provides a method and an apparatus for continuously detecting a hazardous and noxious substance from multiple satellites, the method and apparatus: receiving a multi-satellite image which is photographed by a multi-satellite comprising a satellite having an imaging radar (SAR), a satellite having an infrared sensor, and a satellite having an electronic optical sensor; acquiring a reference image, of the satellite having the SAR, including a ground control point of an observed region; extracting a corresponding point between the reference image and the multi-satellite image; implementing the image matching and geometric correction for the multi-satellite image by using the extracted corresponding point; confirming at least one among the brightness value of pixels of the SAR satellite image, the temperature value of pixels of the infrared satellite image or the color value of pixels of the optical satellite image which are included in the corrected multi-satellite image so as to detect the hazardous and noxious substance, and determine the flow information, thereby detecting continuously and stably the hazardous and noxious substance.
Abstract:
The present invention relates to an optical analysis device using a multi-light source structure, which allows acquisition of an optimized measurement result by adjusting the number of light sources depending on a concentration of an object to be measured, such as ocean spilled oil, etc., and a method therefor. The optical analysis device using a multi-light source structure may comprise: a multi-light source unit including multiple light source units each having a light source which is selectively illuminated, in order to adjust an amount of light depending on a concentration of an object to be measured; a cuvette unit including a cuvette in which an object to be measured is disposed, wherein the cuvette has a prism shape and has as many faces as the number of the light source units plus one, the light source units faces the faces, respectively, and reactive light generated from the object to be measured is emitted through the remaining one face; a light sensor unit for detecting the reactive light emitted through the cuvette; and a control unit for controlling illumination of the light source units configuring the multi-light source unit.
Abstract:
The present invention relates to an optical analysis device using a multi-light source structure, which allows acquisition of an optimized measurement result by adjusting the number of light sources depending on a concentration of an object to be measured, such as ocean spilled oil, etc., and a method therefor. The optical analysis device using a multi-light source structure may comprise: a multi-light source unit including multiple light source units each having a light source which is selectively illuminated, in order to adjust an amount of light depending on a concentration of an object to be measured; a cuvette unit including a cuvette in which an object to be measured is disposed, wherein the cuvette has a prism shape and has as many faces as the number of the light source units plus one, the light source units faces the faces, respectively, and reactive light generated from the object to be measured is emitted through the remaining one face; a light sensor unit for detecting the reactive light emitted through the cuvette; and a control unit for controlling illumination of the light source units configuring the multi-light source unit.
Abstract:
The present invention provides a marine structure platform including: horizontal connecting parts which are disposed under the seawater and connected to one another in a lattice structure; vertical connecting parts which are installed uprightly at four corners of the horizontal connecting parts and protrude from the seawater; and movement damping parts which are extended at the four corners from the vertical connecting parts along the horizontal connecting parts adjacent to one another, the movement damping parts having a plate shape so as to define a vertical gap therebetween.
Abstract:
An unmanned vessel having a coupling apparatus includes: a heaving line launcher, which is provided on one side of the bow of the unmanned vessel; a coupling apparatus, which is provided at the center of gravity of the unmanned vessel and is coupled to a coupling member of a crane provided on a mother vessel; a first winch, which is provided on at least one side of either the bow or stern of the unmanned vessel, a first tow line being wounded around the same; and a second winch around which a second tow line, which passes one side of the coupling apparatus, is wound.
Abstract:
Disclosed is a container fixing holder of a time-series sediment trapping device. With respect to the container fixing holder of the time-series sediment trapping device, the time-series sediment trapping device includes a funnel; a frame disposed to support and surround the funnel, a frame having at least one rod vertically disposed and a fixing plate coupled to the at least one rod forming the frame on a horizontal plane defined by a lower portion of the funnel, wherein a rotation plate, to which a plurality of time-series sediment trapping containers to trap the time-series sediment collected through the funnel are fixedly attached, is formed under the fixing plate. The container fixing holder includes a circular holder for fixing the plurality of time-series sediment trapping containers fixedly attached to the rotation plate without shaking.
Abstract:
The present invention provides a controller for a pendulum type wave-power generating apparatus. Electric power produced by wave-power generation has been pointed out as being of low efficiency and more expensive than wind-power generation. To overcome the above problems, the present invention uses resonance and impedance matching of the sea waves, thus making it possible to markedly enhance the efficiency of wave-power generation. The present invention does not use a wave-height meter which is generally expensive and controls the generating apparatus in response to variation of the conditions of the sea, thus automatically maintaining the resonance and impedance matching operation, thereby making high-efficiency operation possible. As a result, the cost of the wave-power generation can be reduced, so that the wave-power generation can be widely commercialized.
Abstract:
A long distance dredged soil transport system includes a pump module including a pump for generating a compressed air and a plug flow flowing by dividing an inner state of a pipeline to a gaseous unit and a liquefied unit by introducing the generated compressed air into the pipeline by being interlinked to one lateral surface of the pipeline, a pipe module wound with a coil to apply an electromagnetic wave to the liquefied unit and including a plurality of pipelines, database stored with flow information on flow velocity and flow form in response to physical properties of liquefied unit, and a control module communicating with the pipe module, the pump module and the database and applying, to the coil, a waveform of a current matching to a flow waveform of the liquefied unit transported inside the pipeline, and a control method thereof.
Abstract:
There is provided a high efficiency ocean thermal difference power generating system by using liquid-vapor ejector and motive pump comprising: an evaporator for changing transferred refrigerant liquid into refrigerant vapor with high temperature and high pressure by the thermal exchange with surface seawater; a vapor-liquid divider which is installed at the outlet part of the evaporator and divides the refrigerants to liquid-state refrigerant and vapor-state refrigerant respectively; a distributor which is installed at the inlet of the evaporator and distributes the refrigerants flowed into the evaporator to multi-paths; a turbine for generating electric power by using the high pressure refrigerant vapor transferred from the liquid-vapor divider or the evaporator; a motive pump for increasing the pressure of the refrigerant liquid distributed from the distributor or the liquid-vapor divider; a liquid-vapor ejector for mixing the low pressure refrigerant vapor which passed the turbine and the high pressure refrigerant liquid which passed a motive pump, thereby proceeding expansion and compression; a condenser for condensing the refrigerants which was mixed in the liquid-vapor ejector by the thermal exchange with deep seawater; and a refrigerant circulation pump for increasing the pressure of the refrigerants which was condensed in the condenser up to the evaporation pressure and for circulating.