Abstract:
Systems and methods for delivering real-time video imagery to a receiver over a channel. A current video frame is captured and digitized. The digitized frame is divided into a plurality of macroblocks. For each macroblock an intra, inter or skip mode coding mode is determined. Based on instantaneous feedback received from a receiver regarding successfully received video packets for a prior video frame, a quantization parameter is set and the macroblocks are encoded in accordance with their respective selected coding mode. Synchronized error concealment is performed at both the encoder and decoder sides of the system and retransmission of lost video packets, using an adaptive retransmission scheme, are performed in accordance with the instantaneous feedback from the receiver.
Abstract:
A data slicer with a source-degeneration structure is described. In particular, this invention can be implemented in a FM demodulation system. It located at the end of the demodulator. The data slicer can slice a signal transmitted through air and demodulates the same with a demodulator to produce a frequency-shifted modulation (FSK) signal. The signal is a perfect square-wave and is transmitted to a base band circuit. The data slicer with a source-degeneration structure obtains the exact reference voltage. The reference voltage is not affected by noise and doesn't need the coupling capacitor, so it can reduce the difficulty of manufacture and cost. The present invention has a common-source unit with a source-degeneration resistor for producing an input signal and a reference voltage, and a comparator unit for comparing the input signal and the reference voltage and outputting a square-wave signal that corresponds to the input signal.
Abstract:
A method for transforming single-ended signals outputted from a low-noise amplifier of a wireless transceiver into differential signals. The method includes: providing a transformer according to a default requirement of the wireless transceiver; transferring the single-ended signals provided by the low-noise amplifier to a first end of a primary end of the transformer, and coupling a second end of the primary end of the transformer to a power source; grounding a center tap of a secondary end of the transformer; and outputting the differential signals from two ends of the secondary end of the transformer.
Abstract:
A method and an apparatus for analyzing performance of a multi-stage radio frequency amplifier are described. The method simplifies the multi-stage radio frequency amplifier into equivalent input parts, output parts and mid-stage parts. The mid-stage parts are temporarily unset. Therefore, the equivalent input parts and output parts will be adjusted to make best gain performance and the mid-stage parts will be the next targets for analysis. Repeating the above-mentioned methods for decomposing the circuit can systemize the method for analyzing circuits and problems in each part of the circuit may be found more quickly.
Abstract:
An amplification circuit includes a radio-frequency input terminal, a radio-frequency output terminal, a first amplification stage circuit, a second amplification stage circuit, and a variable impedance path. The radio-frequency input terminal is used to receive a radio-frequency signal. The radio-frequency output terminal is used to output the amplified radio-frequency signal. The first amplification stage circuit is coupled to the radio-frequency input terminal and the radio-frequency output terminal. The second amplification stage circuit is coupled to the radio-frequency input terminal and the radio-frequency output terminal. The variable impedance path is coupled to the first amplification stage circuit and the second amplification stage circuit. When the second amplification stage circuit is enabled, the variable impedance path has a low impedance. When the second amplification stage circuit is disabled, the variable impedance path has a high impedance.
Abstract:
A coupler structure includes a main signal line, a first coupling line, a second coupling line and a spacer element. The main signal line is located on a first plane, the first coupling line is located on a second plane, and the second coupling line is located on a third plane, wherein the second plane and the third plane are both in parallel with the first plane, and the second plane and the third plane are both different from the first plane. The spacer element is connected to the main signal line. The projection of the spacer element on the first plane is located between the projection of the first coupling line on the first plane and the projection of the second coupling line on the first plane. The main signal line, the first coupling line and the second coupling line extend along a virtual line.
Abstract:
An amplify device and a semiconductor device are provided in the disclosure. The amplify device includes an amplify unit, a radio frequency signal combination circuit, a first conductive wire and a second conductive wire. The first conductive wire is coupled between an output end of the amplify unit and a first input end of the radio frequency signal combination circuit. The second conductive wire is coupled between the output end of the amplify unit and a second input end of the radio frequency signal combination circuit. Wherein, a length of the first conductive wire is different from a length of the second conductive wire.
Abstract:
A radio frequency (RF) amplifier and a bias circuit are provided. The RF amplifier includes an amplifier, a first inductive-capacitive resonance circuit, and a first bias circuit. The amplifier includes an input terminal configured to receive an incoming RF signal through a first RF path. The first inductive-capacitive resonance circuit includes a first terminal coupled to a first reference voltage. A second terminal of the first inductive-capacitive resonance circuit is coupled to the first RF path. In response to the first reference voltage being at a first reference level, the RF amplifier is enabled; in response to the first reference voltage being at a second reference level, the RF amplifier is disabled. The first bias circuit includes a first terminal configured to be coupled to the first reference voltage and a second terminal coupled to the input terminal of the amplifier to provide a first direct current (DC) component.
Abstract:
A semiconductor device may include a compound substrate and a 3-dimensional inductor structure. The compound substrate may include a front surface and a back surface. The 3-dimensional inductor structure may include a front conductive stack, a back conductive layer, and at least one through-hole structure. At least one portion of the front conductive stack may include a first conductive layer disposed on the front surface of the compound substrate, and a second conductive layer disposed on the first conductive layer. The second conductive layer has a thickness ranging between 30 micrometers and 400 micrometers. The back conductive layer is disposed on the back surface of the compound substrate. The at least one through-hole structure penetrates through the compound substrate, and electrically connects the front conductive stack to the back conductive layer.
Abstract:
An object recognition method includes generating Doppler spectrogram data according to an echo signal, the echo signal being relating to an object; transforming N sets of time-domain data of the Doppler spectrogram data corresponding to N velocities into N sets of cadence spectrogram data, respectively; combining the N sets of spectrogram data to obtain 1D/2D cadence spectrum data, and acquiring a series of cadence feature from the 1D/2D cadence spectrum data to recognize the object.