Abstract:
The present invention is a low-cost, easily deployed, degradable taggant that can be dispersed over a wide area to serve as a witness to activity in the area and for queuing of other sensors. The taggant enables nearly real-time change detection within the treated area using one or more simple optical sensing techniques.
Abstract:
Systems and methods are described herein for determining the location of a transmitter by jointly and collectively processing the full sampled signal data from a plurality of receivers to form a single solution.
Abstract:
A pulsed thermography defect detection apparatus including active and passive infrared (IR) thermography for non-destructive testing (NDT) of powdermetallic (P/M) components for on-line and off-line inspection.
Abstract:
An untethered ultrasound imaging system having selectable command control and wireless component connection and image transmission. Ultrasound data collected by the ultrasound system can be augmented with additional sensor data.
Abstract:
A flexible wall bioreactor is described that uses a small droplet size mist unit, a lower rate ambient air flow rate, and a flexible wall culture chamber to provide an environment that allows for the growth of dense root matrix, shoot cultures, and 2 and 3 dimensional animal tissues.
Abstract:
The invention relates to a method of signal analysis that determines the location of a transmitter and to devices that implement the method. The method includes receiving by at least three receivers, from a transmitter, a first continuous-time signal having a first channel. The first channel includes a first plurality of signal carriers having known relative initial phases and having known frequencies which are periodically spaced and which are orthogonal to one another within a first frequency range. The signal analysis method also includes determining the phase shifts of the carriers of the first channel resulting from the distance the carriers traveled in reaching the first receiver. Analysis of the phase shifts yields time difference of arrival information amongst the receivers, which is further processed to determine the location of the transmitter.
Abstract:
An alloy solute sensor probe, measurement system and measurement method are disclosed for directly measuring solute concentration profiles in conductive material components at elevated processing temperatures. The disclosed device and method permit direct, real-time non-destructive measurement of solute concentration profiles in treated surfaces in alloy components. In disclosed embodiments, a novel concentric carbon sensor and rod-shaped carbon sensor are disclosed which employ AC frequencies for probing the subsurface region of alloy samples to determine carbon concentration profiles at steel surfaces from measurements of alloy resistivity profiles. Results of carbon profile measurements obtained with the disclosed device and method compare favorably with conventional destructive analytical measurements made on post-processed samples. The sensor probe and method may be utilized to determine solute concentration profiles with a variety of solute materials and alloy compositions and may be advantageously employed in alloy surface processing, carburization heat treatments, induction heating and fatigue fracture applications.
Abstract:
A composite gas separation module includes a porous metal substrate; an intermediate layer that includes a powder having a Tamman temperature higher than the Tamman temperature of the porous metal substrate and wherein the intermediate layer overlies the porous metal substrate; and a dense hydrogen-selective membrane, wherein the dense hydrogen-selective membrane overlies the intermediate layer. In another embodiment, a composite gas separation module includes a porous metal substrate; an intermediate powder layer; and a dense gas-selective membrane, wherein the dense gas-selective membrane overlies the intermediate powder layer.
Abstract:
The present invention relates to a method for curing a defect in the fabrication of a composite gas separation module and to composite gas separation modules formed by a process that includes the method. The present invention also relates to a method for selectively separating hydrogen gas from a hydrogen gas-containing gaseous stream. The method for curing a defect in the fabrication of a composite gas separation module includes depositing a first material over a porous substrate, thereby forming a coated substrate, wherein the coated substrate contains at least one defect. Then, the coated substrate can be selectively surface activated proximate to the defect, thereby forming at least one selectively surface activated region of the coated substrate. A second material can be then preferentially deposited on the selectively surface activated region of the coated substrate, whereby the defect is cured.
Abstract:
The present invention relates to a method for fabricating a composite gas separation module and to gas separation modules formed by the method. The present invention also relates to a method for selectively separating hydrogen gas from a hydrogen gas-containing gaseous stream. In one embodiment, the method for fabricating a composite gas separation module includes depositing a first material on a porous substrate, thereby forming a coated substrate. The coated substrate is abraded, thereby forming a polished substrate. A second material is then deposited on the polished substrate. The first material, the second material, or both the first material and the second material can include a gas-selective material. For example, the gas-selective material can include a hydrogen-selective metal, e.g., palladium, or an alloy thereof. In one embodiment, the method includes the step of forming a dense gas-selective membrane over the porous substrate. Practice of the present invention can produce gas separation modules that have thinner and/or more uniform dense gas-selective membranes than are possible using conventional manufacturing techniques.