Abstract:
A method for manufacturing III-nitride semiconductor devices is disclosed. The method employs oxidation and sulfurated treatment to reduce the specific contact resistance between metal and p-type III-nitride semiconductors. The method includes surface treatment of p-type III-nitride semiconductors using (NH4)2Sx solution to remove the native oxide from their surface; evaporating metal layer onto the surface-treated p-type III-nitride semiconductors; and then alloy processing the metals and the p-type III-nitride semiconductor with thermal alloy treatment. The method may further include a pre-oxidation step prior to the sulfurated treatment. In this way, ohmic contact can be formed between the metal layer and the p-type III-nitride semiconductors.
Abstract:
A cutter holder has a body and a damping assembly. The damping assembly is contained inside the body. The damping assembly has a central damping pole and six auxiliary damping poles. The six auxiliary damping poles are arranged around the central damping pole. The body has a specific weight. The central damping pole has a specific weight larger than the specific weight of the body. Each one of the six auxiliary damping poles has a specific weight larger than the specific weight of the body. The damping assembly is utilized to reduce vibrations caused by machining.
Abstract:
An adaptor has a conjunction section and an abutting portion; wherein the abutting portion is axially connected to the conjunction section. The conjunction section has an external surface, a conduction recess, and an inlet hole. The conduction recess is defined in the external surface of the conjunction section and has a bottom face. The inlet hole is defined through the bottom face. The abutting portion has a cutter holder through hole defined through the abutting portion to assemble a cutter holder. The adaptor can be applied on a tool magazine, and the tool magazine has a rotary changer that supplies cutting fluid.
Abstract:
A photovoltaic device including a CZTS absorber layer and method for manufacturing the same are disclosed. The photovoltaic device includes a substrate, a bottom electrode, an absorber layer formed on the bottom electrode, a buffer layer formed on the absorber layer and a top electrode layer formed on the buffer layer. The absorber layer includes a first region adjacent to the bottom electrode and a second region adjacent to the first region. Both of the first region and the second region include a formula of Cua(Zn1-bSnb)(Se1-cSc)2, wherein 0
Abstract:
An ink composition includes a solvent system, a plurality of metal chalcogenide nanoparticles, at least one of metal ions and metal complex ions and a sodium source. The at least one of the metal ions and the metal complex ions are distributed on the surface of the metal chalcogenide nanoparticles and adapted to disperse the metal chalcogenide nanoparticles in the solvent system. The sodium source is dispersed in the solvent system and/or is included in at least one of the metal chalcogenide nanoparticle, the metal ions and the metal complex ions. The metals of the metal chalcogenide nanoparticles, the metal ions and the metal complex ions are selected from a group consisted of group I, group II, group III, group IV elements of periodic table, and sodium and include all metal elements of a chalcogenide semiconductor material.
Abstract:
A method for forming a chalcogenide semiconductor film and a photovoltaic device using the chalcogenide semiconductor film are disclosed. The method includes steps of coating a precursor solution to form a layer on a substrate and annealing the layer to form the chalcogenide semiconductor film. The precursor solution includes a solvent, metal chalcogenide nanoparticles and at least one of metal ions and metal complex ions which are distributed on surfaces of the metal chalcogenide nanoparticles. The metals of the metal chalcogenide nanoparticles, the metal ions and the metal complex ions are selected from a group consisted of group I, group II, group III and group IV elements of periodic table and include all metal elements of a chalcogenide semiconductor material.
Abstract:
An ink composition for forming a chalcogenide semiconductor film and a method for forming the same are disclosed. The ink composition includes a solvent, a plurality of metal chalcogenide nanoparticles and at least one selected from the group consisted of metal ions and metal complex ions. The metal ions and/or complex ions are distributed on the surface of the metal chalcogenide nanoparticles and adapted to disperse the metal chalcogenide nanoparticles in the solvent. The metals of the metal chalcogenide nanoparticles, the metal ions and the metal complex ions are selected from a group consisted of group I, group II, group III and group IV elements of periodic table and include all metal elements of a chalcogenide semiconductor material.
Abstract:
A low-calcium-cementitious material having a calcium oxide content less than or equal to 10 wt % which is processed at room temperature into a low calcium cement mainly composed of mullite and a method manufacturing of the low calcium cement are provided. The low-calcium-cementitious material includes low calcium fly ash, an alkaline agent, and a congealing agent, wherein the calcium oxide content of the low-calcium-cementitious material is less than or equal to 10 wt %. The low calcium fly ash has a calcium oxide content less than or equal to 10 wt %. The low calcium cement manufacturing method includes providing a low calcium fly ash having a calcium oxide content less than or equal to 10 wt %; providing an alkaline agent; providing a congealing agent; and mixing the low-calcium-content fly ash, the alkaline agent, and the congealing agent and standing the mixture at room temperature to form a low calcium cement.