Abstract:
A recombinant fusion protein comprising a human erythropoietin peptide portion linked to an immunoglobulin peptide portion is described. The fusion protein has a prolonged half-life in vivo in comparison to naturally occurring or recombinant native human erythropoietin. In one embodiment of the invention the protein has a half-life in vivo at least three fold higher than native human erythropoietin. The fusion protein also exhibits enhanced erythropoietic bioactivity in comparison to native human erythropoietin. In one embodiment, the fusion protein comprises the complete peptide sequence of a human erythropoietin (EPO) molecule and the peptide sequence of an Fc fragment of human immunoglobulin IgG1. The Fc fragment in the fusion protein includes the hinge region, CH2 and CH3 domains of human immunoglobulin IgG1. The EPO molecule may be linked directly to the Fc fragment to avoid extraneous peptide linkers and lessen the risk of an immunogenic response when administered in vivo. In one embodiment the hinge region is a human Fc fragment variant having a non-cysteine residue at amino acid 6. The invention also relates to nucleic acid and amino acid sequences encoding the fusion protein and transfected cell lines and methods for producing the fusion protein. The invention further includes pharmaceutical compositions comprising the fusion protein and methods of using the fusion protein and/or the pharmaceutical compositions, for example to stimulate erythropoiesis in subjects in need of therapy.
Abstract:
The present invention comprises a new class of compounds capable of modulating the activity of PI3 kinase and, accordingly, useful for treatment of PI3 kinase mediated diseases, including melanomas, carcinomas and other cancer-related conditions. The compounds have a general Formula I wherein each of A1, A2, A3, A4, X, R1 and R2 are defined herein. The invention further comprises pharmaceutical compositions, methods for treatment of PI3 kinase mediated diseases, and intermediates and processes useful for the preparation of compounds of the invention.
Abstract:
Selected compounds are effective for prophylaxis and treatment of diseases, such as HGF mediated diseases. The invention encompasses novel compounds, analogs, prodrugs and pharmaceutically acceptable salts thereof, pharmaceutical compositions and methods for prophylaxis and treatment of diseases and other maladies or conditions involving, cancer and the like. The subject invention also relates to processes for making such compounds as well as to intermediates useful in such processes.
Abstract:
Selected compounds are effective for prophylaxis and treatment of diseases, such as HGF mediated diseases. The invention encompasses novel compounds, analogs, prodrugs and pharmaceutically acceptable salts thereof, pharmaceutical compositions and methods for prophylaxis and treatment of diseases and other maladies or conditions involving, cancer and the like. The subject invention also relates to processes for making such compounds as well as to intermediates useful in such processes.
Abstract:
The invention comprises novel compounds that are effective in the prophylaxis and treatment of diseases, such as integrin receptors mediated diseases, in particular, diseases or conditions mediated by integrin receptors, such as a αvβ3, αvβ5, αvβ6, α5β1 and the like. The invention encompasses novel compounds, pharmaceutically acceptable salts thereof, pharmaceutical compositions and methods for prophylaxis and treatment of such diseases and disorders. The subject invention also relates to processes for making such compounds as well as to intermediates useful in such processes.