Abstract:
Lighting devices that comprise a light source and a reflector, the reflector comprising first, second and third reflector regions. In some devices, a first portion of light is reflected by the first region and then by the third reflector region, a second portion of light is reflected by the second region and forms a primary beam, and at least 5% of the first portion of light that is reflected by the third region is within the primary beam of light. In some devices, at least 5% of all light reflected by the first reflector region travels from the first reflector region directly to the third reflector region. In some devices, at least 5% of all light reflected by the third reflector region traveled directly from the first reflector region to the third reflector region. In some devices, the reflector comprises means for providing the features described above.
Abstract:
A solid state lighting device includes a device-scale stamped heatsink with a base portion and multiple segments or sidewalls projecting outward from the base portion, and dissipates all steady state thermal load of a solid state emitter to an ambient air environment. The heatsink is in thermal communication with one or more solid state emitters, and may define a cup-like cavity containing a reflector. At least a portion of each one sidewall portion or segment extends in a direction non-parallel to the base portion. A dielectric layer and at least one electrical trace may be deposited over a metallic sheet to form a composite sheet, and the composite sheet may be processed by stamping and/or progressive die shaping to form a heatsink with integral circuitry. At least some segments of a heatsink may be arranged to structurally support a lens and/or reflector associated with a solid state lighting device.
Abstract:
An optical element, comprising a substrate and at least one optical film. The substrate is at least partially light-transmissive. The optical film comprises at least a first optical feature and is positioned on a contact surface of the substrate. Also, a lighting device comprising at least one solid state light emitter and such an optical element. Also, methods for making an optical element by molding (e.g., film insert molding), bonding or laminating.
Abstract:
A light engine assembly, comprising at least one trim element, a light engine housing, and a light engine comprising at least one solid state light emitter. In some embodiments, an external surface of the light engine housing is in contact with an internal surface of the trim element. In some embodiments, the light engine assembly further comprises at least one thermal interface element positioned between and in contact with the light engine housing and the trim element. In some embodiments, the light engine assembly further comprises light engine housing fins which are in contact with the light engine housing and the trim element.
Abstract:
Housings for emergency unit luminaires with a front portion that includes a printed circuit board and other operational components and a back portion that includes electrical contacts configured to connect to a source of external power. When the front and back portions are engaged, contact pads projecting from the printed circuit board are guided into engagement with the electrical contacts of the back portion for connection to the external power source. The front portion is disengaged from the back portion, and thus disconnected from power, when needed, for example, for maintenance of the unit.
Abstract:
In some embodiments, a lighting device comprising two or more light sources and an optical device configured to enhance uniformity of light emitted from the light sources and emerging from a surface of the optical device, an average distance between light sources less than one half of the square root of the area of the surface divided by the number of light sources. In some embodiments, a fixture structure comprising a reflective structure and a heat conductor in contact with the reflective structure and covering not more than 30 percent of the surface area of the reflective structure. In some embodiments, a lighting device comprising a fixture structure, at least one light source mounted on one substrate, and at least one light source mounted on another substrate. Other fixture structures and lighting devices.