Abstract:
A solution for uplink transmission in a cellular communication system is disclosed. The same uplink time-frequency resource are scheduled to at least two terminal devices, and sensing periods of unequal lengths are allocated to the at least two terminal devices. The sensing period defines a duration a terminal device senses the uplink time-frequency resource for a conflicting transmission before transmitting in the uplink time-frequency resource.
Abstract:
Downlink common control information communicated in a first network (such as a macro network or a small cell) between a first/macro access node and a user equipment UE is mapped to an uplink resource. The first/macro access node and UE then tune to the mapped uplink resource to send or receive dedicated control information about the UE concerning a second network (an underlay network such as a femto CSG or D2D network). In one embodiment the DCI may be within a downlink assignment indicated by P-RNTI, RA-RNTI, or SI-RNTI; and the mapping uses a control channel element which carries the P-RNTI or the RA-RNTI or the SI-RNTI. In another the mapped uplink resource is a format 1a or format 1b PUCCH and the common control information requires neither an acknowledgement nor a negative acknowledgement. The dedicated control information may inform about interference experienced by the UE with the second network.
Abstract:
Exemplary embodiments are concerned with method of controlling transmission of a set of transmissions from a source device to at least one destination device according to a multicast transmission scheme, the set of transmissions including random linear network coded packets that are to be multicast by the source device to the destination devices. These embodiments differ from this conventional approach in that the number of packets that are encoded for multicast transmission or the rate of transmission thereof is configured using feedback from the destination devices regarding their progress in decoding a previously multicast set of transmissions.
Abstract:
The specification and drawings present a new method, apparatus and software related product (e.g., a computer readable memory) for configuring/implementing by a network/network element a partial full-duplex in time dependent operational mode for wireless communications between UEs and the network/network element, e.g., in LTE systems. The time dependent partial full-duplex may further include bandwidth allocations for the full-duplex and half-duplex time intervals. In the half-duplex time periods, undesirable interference and self-interference effects during signal detection by the UEs and/or eNBs may be reduced to an advantage. The network may configure a time dependence of the partial full-duplex operational mode for wireless communications between UEs and the network, wherein during at least one time interval the network configures a full-duplex operational mode and during at least one other time interval the network configures a half-duplex operational mode for the wireless communications between the UEs and the network.
Abstract:
One embodiment of the invention provides a method for determining a back-off window value for accessing a transmission channel. The method comprises receiving, at a first wireless node, a first set of time-varying parameters for at least one second wireless node; and using, by the first wireless node, the received first set of time-varying parameters at least partially and a second set of time-varying parameters of the first wireless node in determining a back-off window value for the first wireless node for accessing the transmission channel.
Abstract:
There is provided a mechanism for controlling a transmission of a dedicated control signal or control information to a communication network element. Free resources of a PHICH which are linked to an UL transmission but not occupied by ACK/NACK information are determined and selected for transmitting a D2D specific control signal to a D2D device.
Abstract:
The specification and drawings present a new method, apparatus and software related product (e.g., a computer readable memory) for implementing a cellular oriented mechanism such as Random Access (RA) mechanism to support device-to-device (D2D) discovery procedure and D2D connection setup for a direct D2D communication of cellular devices such as UEs, e.g., in LTE wireless systems. The network can provide D2D uplink resource(s) to UEs for setting the D2D communication based on a RACH preamble (e.g., mapped according to a predefined procedure from the discovery signal) received by the network from the UE.
Abstract:
There is provided a mechanism usable for allocating resources and provide control information about a signal to be transmitted by a communication network element such as a D2D device on resources which may be pre-allocated or allocated directly for the signaling. A resource allocation information element is generated which indicates to resources being allocated to a specific communication function, such as D2D. A content or value of a resource allocation field indicates a control information usable for forming a signal to be transmitted via the indicated resources. By means of the value of the resource allocation field, the D2D device derives a signal characteristic or the like of the signal to be transmitted on the indicated resources. The resource indication may be implicit in the form of an indication of a pre-allocated resource, or direct by indicating a dedicated resource.
Abstract:
The specification and drawings present a new method, apparatus and software related product (e.g., a computer readable memory) for discovery of D2D devices in wireless communications, e.g., LTE systems by relating beacon/discovery resources to paging frames, so that the UE may save power being active (e.g., in the wake-up state) only during paging frames. The user equipment may receive during a paging receiving time a paging signal from the wireless network and at least one discovery signal from at least one user equipment operating in the wireless network, wherein a discovery cycle period of the at least one discovery signal is different than the paging cycle period and is determined using the paging cycle period based on a predefined rule.
Abstract:
A fixed or Mode II device enables a Mode I device for license exempt operation by providing to it a list of available license exempt radio channels and a parameter indicating an interval at which contact verification signals CVSs are to be sent. The CVSs verify whether the list remains valid. The fixed/Mode II device then repeatedly sends contact verification signals spaced in time from one another according to the interval. In various embodiments the parameter may be an explicit indication (number of seconds or number of beacons between consecutive CVSs), or it may be implicit (derived from an ID of the fixed/Mode II or Mode I device or a frequency channel, in which the relevant ID is the parameter). A plurality of enabled Mode I devices each gets a device-specific list, and in one embodiment the interval is the same for each of them and the explicit indication is broadcast while in another the parameter is provided to each of them via unicast messages and the interval may differ.