Abstract:
Provided are a method of transmitting and receiving image data with high speed, which includes sequentially transmitting image data output from an image sensor through one or more transmission channels with a speed corresponding to a bandwidth of the transmission channels, and sequentially recording image data received through one or more transmission channels in a frame store with a speed corresponding to a total bandwidth obtained by summing bandwidths of the respective one or more transmission channels, and an apparatus for implementing the method.
Abstract:
A transistor may include a hole blocking layer between a channel layer including oxynitride and an electrode electrically connected to the channel layer. The hole blocking layer may be disposed in a region between the channel layer and at least one of a source electrode and a drain electrode. The channel layer may include, for example, zinc oxynitride (ZnON). A valence band maximum energy level of the hole blocking layer may be lower than a valence band maximum energy level of the channel layer.
Abstract:
A transistor may include a light-blocking layer that blocks light incident on a channel layer. The light-blocking layer may include a carbon-based material. The carbon-based material may include graphene oxide, graphite oxide, graphene or carbon nanotube (CNT). The light-blocking layer may be between a gate and at least one of the channel layer, a source and a drain.
Abstract:
Provided is a method for event processing and a system for using the same. The system for event processing in a computer may include an interface to detect an input associated with an event, an event definition engine which defines the event using a plurality of event components and a corresponding event component wrapper wrapping each of the plurality of event components, an event processing engine which processes the event, and an event action module to generate an output based on the event. The event definition engine may determine a hierarchical relationship between the plurality of event components and assigns the hierarchical relationship in the corresponding event component wrapper. Moreover, the event processing engine may execute each of the event components according to the hierarchical relationship assigned in the event component wrapper.
Abstract:
An organic electronic device includes an active region polarity definition layer, and a bulk heterojunction active layer formed on the active region polarity definition layer. The bulk heterojunction active layer includes an upper region and a lower region having respective majority carriers localized therein of different polarities.
Abstract:
A thin film transistor (“TFT”) includes a poly silicon layer formed on a flexible substrate and including a source region, a drain region, and a channel region, and a gate stack formed on the channel region of the poly silicon layer, wherein the gate stack includes first and second gate stacks, and a region of the poly silicon layer between the first and second gate stacks is an off-set region. A method of manufacturing the TFT is also provided.
Abstract:
A thin film patterning method may include forming a thin film by coating a precursor solution containing a precursor of metal oxide onto a substrate, soft baking the thin film, exposing the thin film to light by using a photomask, developing the thin film, and hard baking the developed thin film. The precursor may include metal acetate, for example, a zinc acetate-based material, and the metal oxide thin film may include zinc oxide (ZnO).
Abstract:
Provided are a method of transmitting and receiving image data with high speed, which includes sequentially transmitting image data output from an image sensor through one or more transmission channels with a speed corresponding to a bandwidth of the transmission channels, and sequentially recording image data received through one or more transmission channels in a frame store with a speed corresponding to a total bandwidth obtained by summing bandwidths of the respective one or more transmission channels, and an apparatus for implementing the method.
Abstract:
Disclosed is a method for forming banks during the fabrication of electronic devices incorporating an organic semiconductor material that includes preparing an aqueous coating composition having at least a water-soluble polymer, a UV curing agent and a water-soluble fluorine compound. This coating composition is applied to a substrate, exposed using UV radiation and then developed using an aqueous developing composition to form the bank pattern. Because the coating composition can be developed using an aqueous composition rather than an organic solvent or solvent system, the method tends to preserve the integrity of other organic structures present on the substrate. Further, the incorporation of the fluorine compound in the aqueous solution provides a degree of control over the contact angles exhibited on the surface of the bank pattern and thereby can avoid or reduce subsequent surface treatments.