Abstract:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 50 weight percent of eicosapentaenoic acid [“EPA”], an ω-3 polyunsaturated fatty acid, in the total oil fraction are described. These strains over-express heterologous Δ9 elongases, Δ8 desaturases, Δ5 desaturases, Δ17 desaturases, Δ12 desaturases and C16/18 elongases, and optionally over-express diacylglycerol cholinephosphotransferases. Preferred gene knockouts are also described. Production host cells, methods for producing EPA within said host cells, and products comprising EPA from the optimized Yarrowia lipolytica strains are claimed.
Abstract:
The present invention relates to Δ6 desaturases, which have the ability to convert linoleic acid [“LA”; 18:2 ω-6] to γ-linolenic acid [“GLA”; 18:3 ω-6] and/or α-linolenic acid [“ALA”; 18:3 ω-3] to stearidonic acid [“STA”; 18:4 ω-3]. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ6 desaturases, along with methods of making long-chain polyunsaturated fatty acids [“PUFAs”] using these Δ6 desaturases in oleaginous yeast, are disclosed.
Abstract:
Methods for the production of omega-3 and/or omega-6 fatty acids in oleaginous yeasts grown on a fermentable carbon source selected from the group consisting of invert sucrose, glucose, fructose and combinations of these, provided that glucose is used in combination with invert sucrose and/or fructose. Specifically, methods are provided for production of linoleic acid, eicosadienoic acid, gamma-linolenic acid, dihomo-gamma-linolenic acid, arachidonic acid, n-6 docosapentaenoic acid, α-linolenic acid, stearidonic acid, eicosatrienoic acid, eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-9 elongases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-9 elongases in plants.
Abstract:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-8 desaturases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-8 desaturases in plants and oleaginous yeast.
Abstract:
Described are methods of reducing the amount of byproduct organic acids during fermentation of an organism, based on expression of a heterologous malonyl-CoA synthetase. A polyunsaturated fatty acid [“PUFA”]-producing strain of the oleaginous yeast Yarrowia lipolytica was engineered to express a heterologous malonyl-CoA synthetase gene. The expression did not effect the production of PUFAs, but did result in a reduced amount of malonates when compared to the amount of malonates produced in the parental strain not expressing malonyl-CoA synthetase.
Abstract:
The present invention relates to a Δ5 desaturase, which has the ability to convert dihomo-γ-linolenic acid (DGLA; 20:3 ω-6) to arachidonic acid (ARA; 20:4 ω-6) and/or eicosatetraenoic acid (ETA; 20:4 ω-3) to eicosapentaenoic acid (EPA; 20:5 ω-3). Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ5 desaturase along with a method of making long chain polyunsaturated fatty acids (PUFAs) using this Δ5 desaturase in oleaginous yeast are disclosed.
Abstract:
The present invention relates to Δ17 desaturases, which have the ability to convert ω-6 fatty acids into their ω-3 counterparts (i.e., conversion of arachidonic acid [20:4, ARA] to eicosapentaenoic acid [20:5, EPA]). Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ17 desaturases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these Δ17 desaturases in oleaginous yeast are disclosed.
Abstract:
Described here are Δ4 desaturases that convert all-cis-7,10,13,16,19-docosapentaenoic acid [“DPA”; 22:5 ω-3] to docosahexaenoic acid [“DHA”; 22:6 ω-3], with secondary activity in converting docosatetraenoic acid [“DTA”; 22:4 ω-6] to all-cis-4,7,10,13,16-docosapentaenoic acid [“DPAn-6”; 22:5 ω-6]. Also, described here are isolated nuclei acid fragments and recombinant constructs comprising such fragments encoding Δ4 desaturases as well as methods of making long chain polyunsaturated fatty acids [“PUFAs”] using this Δ4 desaturase in oleaginous yeast.
Abstract:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 50 weight percent of eicosapentaenoic acid [“EPA”], an ω-3 polyunsaturated fatty acid, in the total oil fraction are described. These strains over-express heterologous Δ9 elongases, Δ8 desaturases, Δ5 desaturases, Δ17 desaturases, Δ12 desaturases and C16/18 elongases, and optionally over-express diacylglycerol cholinephosphotransferases. Preferred gene knockouts are also described. Production host cells, methods for producing EPA within said host cells, and products comprising EPA from the optimized Yarrowia lipolytica strains are claimed.