Abstract:
Method and system for maintaining accuracy of voice recognition are described herein. The audio system reproducing sound using a loudspeaker array that is housed in a loudspeaker cabinet may selection from a number of sound rendering modes and changing the selected sound rendering mode based on the current playback volume set on the audio system. The sound rendering modes include at least one of: a number of free space modes and a number of complex modes. Other aspects are also described and claimed.
Abstract:
Embodiments of the present disclosure can provide systems, methods, and computer-readable medium for adjusting audio and/or video information of a video clip based at least in part on facial feature and/or voice feature characteristics extracted from hardware components. For example, in response to detecting a request to generate an avatar video clip of a virtual avatar, a video signal associated with a face in a field of view of a camera and an audio signal may be captured. Voice feature characteristics and facial feature characteristics may be extracted from the audio signal and the video signal, respectively. In some examples, in response to detecting a request to preview the avatar video clip, an adjusted audio signal may be generated based at least in part on the facial feature characteristics and the voice feature characteristics, and a preview of the video clip of the virtual avatar using the adjusted audio signal may be displayed.
Abstract:
An automatic speech recognition (ASR) triggering system, and a method of providing an ASR trigger signal, is described. The ASR triggering system can include a microphone to generate an acoustic signal representing an acoustic vibration and an accelerometer worn in an ear canal of a user to generate a non-acoustic signal representing a bone conduction vibration. A processor of the ASR triggering system can receive an acoustic trigger signal based on the acoustic signal and a non-acoustic trigger signal based on the non-acoustic signal, and combine the trigger signals to gate an ASR trigger signal. For example, the ASR trigger signal may be provided to an ASR server only when the trigger signals are simultaneously asserted. Other embodiments are also described and claimed.
Abstract:
An assistive apparatus, and a method of providing an accessibility switch output by the assistive apparatus, is described. The assistive apparatus may include an accelerometer to be worn in an ear canal of a user, and a display having a graphical user interface. The accelerometer may generate an input signal representing an input command made by the user, and more particularly, the generated input command may represent one or more hums transmitted from vocal cords of the user to the accelerometer in the ear canal via bone conduction. The assistive apparatus may provide an accessibility switch output in response to the input signals representing the input command. For example, the accessibility switch output may cause a selection of a user interface element of the graphical user interface. Other embodiments are also described and claimed.
Abstract:
An orientation detector can have a first microphone, a second microphone, and a reference microphone spaced from the first microphone and the second microphone. An orientation processor can be configured to determine an orientation of the first microphone, the second microphone, or both, relative to a user's mouth based on a comparison of a relative strength of a first signal associated with the first microphone to a relative strength of a second signal associated with the second microphone. A channel selector in a speech enhancer can select one signal from among several signals based at least in part on the orientation determined by the orientation processor. A mobile communication handset can include a microphone-based orientation detector of the type disclosed herein.
Abstract:
Method of improving voice quality using a wireless headset with untethered earbuds starts by receiving first acoustic signal from first microphone included in first untethered earbud and receiving second acoustic signal from second microphone included in second untethered earbud. First inertial sensor output is received from first inertial sensor included in first earbud and second inertial sensor output is received from second inertial sensor included in second earbud. First earbud processes first noise/wind level captured by first microphone, first acoustic signal and first inertial sensor output and second earbud processes second noise/wind level captured by second microphone, second acoustic signal, and second inertial sensor output. First and second noise/wind levels and first and second inertial sensor outputs are communicated between the earbuds. First earbud transmits first acoustic signal and first inertial sensor output when first noise and wind level is lower than second noise/wind level. Other embodiments are described.
Abstract:
A speech recognition system for resolving impaired utterances can have a speech recognition engine configured to receive a plurality of representations of an utterance and concurrently to determine a plurality of highest-likelihood transcription candidates corresponding to each respective representation of the utterance. The recognition system can also have a selector configured to determine a most-likely accurate transcription from among the transcription candidates. As but one example, the plurality of representations of the utterance can be acquired by a microphone array, and beamforming techniques can generate independent streams of the utterance across various look directions using output from the microphone array.
Abstract:
Method for improving noise suppression for ASR starts with a microphone receiving an audio signal including speech signal and noise signal. In each frame for frequency band of audio signal, a noise estimator detects ambient noise level and generates noise estimate value based on estimated ambient noise level, variable noise suppression target controller generates suppression target value using noise estimate value and logistic function, a gain value calculator generates a gain value based on suppression target value and noise estimate value, and combiner enhances the audio signal by the gain value to generate a clean audio signal in each frame for all frequency bands. Logistic function models desired noise suppression level that varies based on ambient noise level. Variable level of noise suppression includes low attenuation for low noise levels and progressively higher attenuation for higher noise level. Other embodiments are also described.
Abstract:
Various techniques for adaptively varying audio feedback data on an electronic device are provided. In one embodiment, an audio user interface implementing certain aspects of the present disclosure may devolve or evolve the verbosity of audio feedback in response to user interface events based at least partially upon the verbosity level of audio feedback provided during previous occurrences of the user interface event. In another embodiment, an audio user interface may be configured to vary the verbosity of audio feedback associated with a navigable list of items based at least partially upon the speed at which a user navigates the list. In a further embodiment, an audio user interface may be configured to vary audio feedback verbosity based upon the contextual importance of a user interface event. Electronic devices implementing the present techniques provide an improved user experience with regard to audio user interfaces.
Abstract:
An electronic device for buzz reduction is described. The electronic device is to be used with a speaker driver that is built onto an enclosure and is to be driven by an audio signal which could cause the enclosure to produce buzz. The electronic device includes a filter that is to attenuate a frequency component of the audio signal before driving the speaker driver. The electronic device also includes a controller that is to configure the filter to attenuate the frequency component of the audio signal in response to determining that strength of the audio signal at the frequency component exceeds a threshold. Other embodiments are also described and claimed.