Abstract:
A key mechanism can include one or more butterfly hinges. Each butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together.
Abstract:
Multi-functional keyboard assemblies include an array of keys formed from stacked component layers. A top portion of the key may be capable of travelling vertically with respect to a base of the key. The top portion can include a keycap and a circuitry module coupled to the keycap. The keys may be capable of receive at least two distinct types of inputs and/or receiving at least one type of input and providing at least one type of output. Such output may include use of one or more light sources, displays, and/or haptic feedback devices.
Abstract:
A polarized electromagnetic actuator includes a movable armature, a stator, and at least one coil wrapped around the stator. At least one permanent magnet is disposed over the stator. When a current is applied to the at least one coil, the at least one coil is configured to reduce a magnetic flux of at least one permanent magnet in one direction and increase a magnetic flux of at least one permanent magnet in another direction. The movable armature moves in the direction of the increased magnetic flux.
Abstract:
A key supported by a scissor mechanism including interlocking scissor members assembled to mutually pivot along a pivot track. A first scissor member may include a pivot track and an up-stop track and a second scissor member may include at least a first and second extension portion positioned within the pivot track and the up-stop track respectively. When the key is depressed, the first extension portion may slide and at least partially pivot or rotate within the pivot track, and the second extension portion may slide within the up-stop track.
Abstract:
In a first embodiment, an input device includes at least one keycap, a support mechanism configured to move the keycap from a first position to a second position, a feature plate having at least one anchoring mechanism operably connected to the support mechanism, and an illumination panel. The illumination panel is positioned between the at least one keycap and the feature plate. The at least one anchoring member extends through a portion of the illumination panel. In a second embodiment, an input device includes a keycap, a support mechanism configured to move the keycap, a support plate operably connected to the support mechanism, and an illumination panel. The illumination panel includes a light source, a light guide, and a frame substantially surrounding the light guide. Light illuminated from the light source is directed by the light guide and the frame towards the keycap.
Abstract:
A method is provided for fabricating a bending beam sensor coupled to a touch input device. The method includes providing a bending beam. The method also includes placing a first strain gauge and a second strain gauge on a surface of the beam near a first end of the beam, and aligning the first strain gauge and the second strain gauge with the beam along an axis. The first end is attached to a base. The method further includes coupling the first strain gauge and the second strain gauge to a plate of the touch input device and electrically connecting the first strain gauge and the second strain gauge such that a differential signal is obtained from the first strain gauge and the second strain gauge when a load is applied on the plate of the touch input device.
Abstract:
A hinge assembly having a hollow clutch is arranged to pivotally couple a portable computer base portion to a portable computer lid portion. The hinge assembly includes at least a hollow cylindrical portion that includes an annular outer region and a central bore region, the central bore region suitably arranged to provide support for electrical conductors between the base and lid portions. The hinge assembly also includes a plurality of fastening components that couple the hollow clutch to the base portion and the lid portion of the portable computer, with at least one of the fastening regions being integrally formed with the hollow cylindrical portion such that space, size and part count are minimized. The integrally formed fastening region(s) can be flat with holes dispersed therethrough for screws, bolts or the like. The central bore can also support a heat transfer element and can also serve as a lubricant reservoir.
Abstract:
An input device configured to communicate with a computing device includes at least one keycap, a support mechanism operably connected to the keycap and configured to move the keycap from a first position to a second position, and a feature plate operably connected to the support mechanism. The support mechanism includes a first support and a second support. The first support and the second support are each connected to the at least one keycap and the feature plate. The first support and second support pivot to allow vertical movement of the keycap but lateral movement of the first support and second support are restricted.
Abstract:
A low travel dome and systems for using the same are disclosed. A low travel switch may include a key cap and an elastomeric dome that may be configured to provide a predefined tactile feedback over a predefined travel amount of the key.
Abstract:
A key mechanism can include one or more butterfly hinges. Each butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together.