Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a communication device having a controller to transmit to a media server a request for distribution of media content to one or more targeted recipients according to a user profile associated with the communication device that is stored in the media server. The format of the media content can be adjusted by the media server based at least in part on the user profile. Other embodiments are disclosed.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, receiving a request for a voice call at a mobile switching center server, transmitting a mapping query from the mobile switching center server to a database in response to the request for the voice call, route the request from the mobile switching center server to an internet protocol multimedia subsystem for facilitating establishing the voice call when the mapping query is successful in obtaining an internet protocol address for establishing the voice call with a recipient communication device, and routing the request from the mobile switching center server to a second server for facilitating establishing the voice call without routing the request to the internet protocol multimedia subsystem when the mapping query is not successful in obtaining the internet protocol address. Other embodiments are disclosed.
Abstract:
A determination is made whether to forward a request for communication services associated with a specific number range from a physical telephone number mapping service server to a virtual telephone number mapping service server. Responsive to determining to forward the request, a determination is made whether a virtual telephone number mapping service instance has been provisioned to handle requests associated with the specific number range.
Abstract:
A mechanism controls global synchronization, or registration floods, that may result when a large number of endpoints in a Voice over Internet Protocol (VoIP) network such as an Internet Protocol Multimedia Subsystem (IMS) come online simultaneously after a catastrophic failure. The mechanism allows the Domain Name System (DNS) infrastructure to efficiently control the overload condition by registering user end points with backup border elements, and by staggering and by randomizing the time-to-live (TTL) parameter in registrations with backup border elements.
Abstract:
A mechanism controls global synchronization, or registration floods, that may result when a large number of endpoints in a Voice over Internet Protocol (VoIP) network such as an Internet Protocol Multimedia Subsystem (IMS) come online simultaneously after a catastrophic failure. The mechanism allows the Domain Name System (DNS) infrastructure to efficiently control the overload condition by registering user end points with backup border elements, and by staggering and by randomizing the time-to-live (TTL) parameter in registrations with backup border elements.
Abstract:
A mechanism is provided for recovering from a catastrophic failure that results in a large number of user endpoints attempting to come on line simultaneously after an NGN is restored. In an enhanced DNS load balancer, DNS queries from the user end points relating to a particular NGN edge device are selectively dropped if a rate of queries for the particular edge device suddenly increases or exceeds a threshold. The query dropping may also be based in part on the class of service assigned to the user endpoint.
Abstract:
Systems and methods to select peered border elements for a communication session based on Quality-of-Service (QoS) are disclosed. An example method includes selecting a peered border element to handle a communication session based on a list of peered border elements (PBEs) and a composite QoS parameter of the communication session, the list of PBEs being prioritized based on respective statuses of PBEs in the list, the first composite QoS parameter being based on weighted QoS parameters of the communication session including a grade of service (GoS) parameter of the communication session and a preferred mode of communication for a VoIP device of a called party in the communication session, the GoS parameter including an attempted performance range and an expected performance range of the communication session; and controlling a second server to generate a QoS authorization token to reserve network resources associated with the selected PBE.
Abstract:
A mechanism controls global synchronization, or registration floods, that may result when a large number of endpoints in a Voice over Internet Protocol (VoIP) network such as an Internet Protocol Multimedia Subsystem (IMS) come online simultaneously after a catastrophic failure. The mechanism allows the Domain Name System (DNS) infrastructure to efficiently control the overload condition by registering user end points with backup border elements, and by staggering and by randomizing the time-to-live (TTL) parameter in registrations with backup border elements.
Abstract:
A user is identified based at least in part on a user identification designation associated with an incoming communication. A message recipient is then determined based at least in part on the identified user and one or more address books associated with message recipients by comparing the user identification designation to one or more entries in the one or more recipient databases. The incoming communication is routed to the determined message recipient. Escalation procedures are implemented up to a configured level in the recipient organization based on various criteria. As messages are escalated and deposited in mailboxes associated with the determined message recipients, the determined message recipients are notified of the deposited messages.
Abstract:
A system and method for processing a call to a destination associated with multiple group members in a unified messaging system by determining a prioritized order of the group members for presentation to caller and receiving a selection from the caller. The order of the group members can be determined based on call histories, address books, and distribution lists of the calling party and the group members of the destination. A weighted score is computed for each group member, and the group members are sorted based on the weighted scores. The sorted list of group members is then presented to the calling party for selection. Based on the calling party's selection the unified messaging system can further process the call.