摘要:
A magnetic force drive device (7) has the first movable part (100) and the first driving unit (200). The first movable part (100) has the first movable plate (111), and a permanent magnet (120) that is magnetized in a direction substantially parallel to the first movable plate (111), and is supported by the first frame body (112) and the first pair of beam parts (113), so as to be able to oscillate around the Y axis, which is substantially parallel to the first movable plate (111) and substantially perpendicular to the direction in which the permanent magnet (120) is magnetized. The first driving unit (200) has a yoke (210), and a coil (220) that magnetizes the yoke (210). The yoke (210) has the first end part (211a), and a second end part (212a) that is placed on substantially the opposite side of the first end part (211a) against one magnetic pole of the permanent magnet (120). The first end part (211a) and second end part (212a) are magnetized in mutually different polarities, and drive the first movable part (100) in the same oscillation direction.
摘要:
Optical scanning device 10 according to the present invention includes: plate-like movable mirror 11 having reflection surface 12 for reflecting light on one surface, and piezoelectric unit 13 including a plurality of piezoelectric elements on the other surface; a pair of torsionally deformable torsion beams 2 and 3 arranged opposite to each other at both ends of movable mirror 11 and swingably supporting movable mirror 11; driving units 4 and 5 for driving movable mirror 11 to oscillate; and compensating voltage application means 8 for applying a compensating voltage that is an alternating-current voltage to piezoelectric unit 13 when movable mirror 11 oscillates, thereby causing compensatory deformation in movable mirror 11 to compensate for deformation that occurs in movable mirror 11 due to the oscillation of movable mirror 11.
摘要:
A magnetic force drive device (7) has the first movable part (100) and the first driving unit (200). The first movable part (100) has the first movable plate (111), and a permanent magnet (120) that is magnetized in a direction substantially parallel to the first movable plate (111), and is supported by the first frame body (112) and the first pair of beam parts (113), so as to be able to oscillate around the Y axis, which is substantially parallel to the first movable plate (111) and substantially perpendicular to the direction in which the permanent magnet (120) is magnetized. The first driving unit (200) has a yoke (210), and a coil (220) that magnetizes the yoke (210). The yoke (210) has the first end part (211a), and a second end part (212a) that is placed on substantially the opposite side of the first end part (211a) against one magnetic pole of the permanent magnet (120). The first end part (211a) and second end part (212a) are magnetized in mutually different polarities, and drive the first movable part (100) in the same oscillation direction.
摘要:
Provided are a compound having an excellent hypoglycemic action, or a pharmaceutically acceptable salt thereof, and a pharmaceutical composition having an excellent therapeutic effect and/or prophylactic effect on type 1 diabetes, type 2 diabetes, and the like, which cause an increase in the blood sugar level due to abnormal sugar metabolism. A compound represented by general formula (I), or a pharmaceutically acceptable salt thereof, is disclosed.
摘要:
A magnetic random access memory includes: a first and second wirings, a plurality of third wirings, a plurality of memory cells and a terminating unit. The first and second wirings extend in a Y direction. The plurality of third wirings extends in an X direction. The memory cell is provided correspondingly to an intersection between the first and second wirings and the third wiring. The terminating unit is provided between the plurality of memory cells and connected to the first and second wirings. The memory cell includes transistors and a magnetoresistive element. The transistors are connected in series between the first and second wirings and controlled based on a signal of the third wiring. The magnetoresistive element is connected to a wiring through which the transistors are connected. At a time of a writing operation, when the write current 1w is supplied from one of the first and second wiring to the other through the transistors, the terminating unit grounds the other.
摘要:
An MRAM of a spin transfer type according to the invention is provided with a memory cell 10 and a word driver 30. The memory cell 10 has a magnetic resistance element 1 and a selection transistor TR having one of source/drain electrodes which is connected with one end of the magnetic resistance element 1. The word driver 30 drives a word line WL connected with a gate electrode of the selection transistor TR. The word driver 30 changes a drive voltage of the word line WL according to the write data DW to be written in the magnetic resistance element 1.
摘要:
An operation method of an MRAM of the present invention is an operation method of the MRAM in which a data write operation is carried out in a toggle write. The operation method of the present invention includes: (A) reading a data from a data cell by using a reference signal which is generated by using a reference cell; (B) performing an error detection on the read data; (C) correcting the data stored in the data cell, when an error is detected in the read data; (D) reading the data from the data cell as a first re-read data after the (C), when the error is detected in the read data, (E) performing the error detection on the first re-read data; (F) correcting the data stored in the reference cell, when an error is detected in the first re-read data; (G) reading the data from the data cell as a second re-read data after the (F), when the error is detected in the first re-read data; (H) performing the error detection on the second re-read data; and (I) correcting the data stored in the data cell again, when the error is detected in the second re-read data.
摘要:
A semiconductor integrated circuit is provided that can prevent an internal voltage from the voltage generating circuit from varying during a long term. The semiconductor integrated circuit of the present invention includes a voltage generating circuit configured to generate a reference voltage; a function circuit configured to operate by using the reference voltage; a first capacitance connected to a first node between the voltage generating circuit and the function circuit; and a switch provided between the voltage generating circuit and the first node. The switch is in a turned-off state at least for a period during which the function circuit is in an activated state.
摘要:
A magnetic random access memory of the present invention includes: a plurality of first wirings and a plurality of second wirings extending in a first direction; a plurality of third wirings and a plurality of fourth wirings extending in a second direction; and a plurality of memory cells provided at intersections of the plurality of first wirings and the plurality of third wirings, respectively. Each of the plurality of memory cells includes: a first transistor and a second transistor connected in series between one of the plurality of first wirings and one of the plurality of second wirings and controlled in response to a signal on one of the plurality of third wirings, a first magnetic resistance element having one end connected to a write wiring through which the first transistor and the second transistor are connected, and the other end grounded; and a second magnetic resistance element having one end connected to the write wiring, and the other end connected to the fourth wiring.
摘要:
An MRAM having a first cell array group (2-0)and a second cell array group (2-1) containing a plurality of cell arrays (21) is used. Each of the first cell array group (2-0) and the second cell array group (2-1) includes a first current source unit for supplying a first write current IWBL to a bit line WBL of the cell array (21) and a first current waveform shaping unit having a first capacitor requiring precharge and shaping the waveform of the first write current IWBL. When the cell array (21) performs write into a magnetic memory (24), the first current waveform shaping unit of the first cell array group (2-0) and the first current waveform shaping unit of the second cell array group (2-1) charges and discharges electric charge accumulated in the first capacitor to wiring toward the bit line WBL at different periods from each other.