Abstract:
Encoded control information can be mapped to an enhanced physical downlink control channel (ePDCCH) search space of a user equipment (UE) in accordance with an offset and aggregation level. The ePDCCH search space may include a physical resource block (PRB) set located in a data region of a downlink subframe. The encoded control information may be mapped into one or more enhanced control channel elements (eCCEs) of the ePDCCH search space beginning from a starting location. The starting location is an eCCE location within the PRB set. The PRB set, as well as the starting/eCCE location within the PRB set, are identified in accordance with an offset associated with the UE. A number of eCCEs carrying encoded information corresponds to an aggregation level.
Abstract:
A method includes determining a first subframe on which to transmit a first downlink control information (DCI) message and determining a second subframe on which to transmit a first information. The method also includes determining a delay between the first subframe and the second subframe and transmitting, by a communications controller to a user equipment (UE), the second subframe in accordance with the delay.
Abstract:
A system and method of scheduling transmissions. A wireless device such as an eNodeB (eNB) may schedule a transmission of a wideband (WB) signal on a micro-frame selected from a plurality of WB micro-frames of a WB carrier. A narrowband (NB) subframe may span a portion of the selected WB micro-frame in the frequency-domain, and the selected WB micro-frame may overlap at least a portion of the NB subframe in the time-domain. The WB signal and an NB signal may be transmitted over the WB micro-frame and the NB subframe in accordance with a first numerology and a second numerology, respectively. A WB subframe may be divided into a plurality of micro-frames. The transmission direction of the WB micro-frame may be scheduled according to a transmission rule based on the contents of a payload in the NB subframe.
Abstract:
A method for transmitting resource allocation information to a wireless node in a communications system includes selecting a search space from one of a first search space and a second search space, the first search space associated with a first set of control channel parameters and the second search space associated with a second set of control channel parameters. The method also includes modulating the first control information, and mapping the modulated first control information onto the selected search space in a first subframe, where at least one of modulating the first control information and mapping the modulated first control information is according to a selected set of control channel parameters associated with the selected search space. The method further includes transmitting the first subframe to the wireless node, and transmitting a first parameter indicator identifying the selected set of control channel parameters to the wireless node.
Abstract:
A method for allocating network resources to user equipments (UEs) includes configuring a first group of component carriers with resource allocations indicated by a joint downlink control information (DCI) message, configuring a second group of component carriers with resource allocations for each component carrier indicated by a dedicated DCI message, generating the joint DCI message indicating first resource allocations for a first subset of the first group of component carriers, generating a plurality of dedicated DCI messages, wherein each dedicated DCI message indicates a second resource allocation for a component carrier in a second subset of the second group of component carriers, mapping each one of the joint DCI message and the plurality of dedicated DCI messages to a control channel, and sending the control channels to the UE.
Abstract:
Embodiments are provided reducing interference between cellular and direct mobile communication (DMC) links in wireless systems. In embodiment, a method performed by a network controller includes sending, to a second network controller, information of resources for a first set of DMC links between DMC user equipments (UEs). The first set of DMC links is associated with the network controller. The method further includes receiving second information of resources for a second set of DMC links associated with the second network controller. The network controller coordinates with the second network controller the allocation of network resources for the first set of DMC links between the DMC UEs. The network resources comprise cellular and DMC resources.
Abstract:
A method for operating a UE includes receiving, by the UE during an initial access sequence, a plurality of first inbound beams each transmitted by a communications controller in a different transmit direction over a first carrier, where the first inbound beams have a different subcarrier frequency range from each other, generating values of a receive metric in accordance with the first inbound beams, selecting one of the first inbound beams in accordance with the receive metric values, transmitting, by the UE, an indication of the selected first inbound beam, and receiving, by the UE, a second inbound beam transmitted by the communications controller in a transmit direction in accordance with the indication of the selected first inbound beam, where the second inbound beam has a second subcarrier frequency range of the first carrier that is different than a first subcarrier frequency range of the selected first inbound beam.
Abstract:
An embodiment of a system for operating a communications controller for a group of user equipments engaged in a DMC link in a wireless communications system is provided. The communications controller is configured to allocate a set of subframes in one periodic group of subframes to the group of UEs for the DMC link, signal the set of allocated subframes to the group of UEs, and transmit parameters related to a group of HARQ processes of the DMC link. In an embodiment, the communication controller uses HARQ processes for cellular UE transmission that are determined independently from HARQ processes of the group of HARQ processes for the DMC link, and the parameters are configured to enable the group of UEs to manage the group of HARQ processes for the DMC link.
Abstract:
Encoded control information can be mapped to an enhanced physical downlink control channel (ePDCCH) search space of a user equipment (UE) in accordance with an offset and aggregation level. The ePDCCH search space may include a physical resource block (PRB) set located in a data region of a downlink subframe. The encoded control information may be mapped into one or more enhanced control channel elements (eCCEs) of the ePDCCH search space beginning from a starting location. The starting location is an eCCE location within the PRB set. The PRB set, as well as the starting/eCCE location within the PRB set, are identified in accordance with an offset associated with the UE. A number of eCCEs carrying encoded information corresponds to an aggregation level.
Abstract:
A system and method for D2D discovery is provided. In an embodiment the method includes sending, by a base station, first parameters to a first User Equipment (UE) indicating a set of discovery resources in a discovery cycle, wherein the discovery cycle comprises a plurality of subframes; and sending, by the base station, second parameters to the first UE indicating a first probability for transmitting a first discovery signal to a second UE on a subframe of the plurality of subframes so that the first UE is capable of transmitting the first discovery signal to a second UE in the discovery cycle according to the first parameters when a random number between 0 and 1, selected by the first UE, is equal or larger than the first probability.