摘要:
An electrically conductive fluid distribution element for use in a fuel cell having a layer of a conductive non-metallic fiberless microporous media. In certain embodiments, an electrically conductive metal is deposited along a surface of the element to form one or more metallized regions. The metallized regions are arranged to contact a membrane electrode assembly (MEA) in a fuel cell assembly, and thus improve electrical conductance at contact regions between the MEA and the layer of media. Methods of making such a fluid distribution element and operating fuel cell assemblies are also provided.
摘要:
In at least one embodiment, the present invention provides an electrically conductive fluid distribution plate and a method of making, and system for using, the electrically conductive fluid distribution plate. The plate comprises a plate body having a surface defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, at least a portion of the surface having a roughness average of 0.5 to 5 μm and a contact resistance of less than 40 mohm cm2 when sandwiched between carbon papers at 200 psi.
摘要:
A bipolar plate having hydrophilic surfaces is disclosed. The bipolar plate includes multiple surfaces including channels having channel surfaces. A hydrophilic coating is provided on the surfaces to enhance the water management capabilties of a fuel cell.
摘要:
A method of fabricating a corrosion-resistant and inexpensive bipolar plate for a fuel cell is disclosed. The method includes providing a bipolar plate substrate and coating a corrosion-resistant coating on the bipolar plate substrate using a kinetic spray process.
摘要:
A method of enhancing water management capabilities of a fuel cell is disclosed. The method includes providing a fuel cell component having hydrophilic or weakly hydrophobic surfaces, increasing a hydrophobicity of at least one of said hydrophilic surfaces and assembling the fuel cell component into the fuel cell.
摘要:
An electrically conductive fluid distribution element for use in a fuel cell having a conductive non-metallic porous media having a surface with an electrically conductive metal deposited along one or more metallized regions. The metallized regions are arranged to contact a membrane electrode assembly (MEA) in a fuel cell assembly, and thus improve electrical conductance at contact regions between the MEA and the fluid distribution media. Methods of making such a fluid distribution element and operating fuel cell assemblies are also provided.
摘要:
A separator assembly for use in a stack of electrochemical cells is provided, having a first conductive metallic substrate with a first surface and a second conductive metallic substrate with a second surface, wherein each of the first and second surfaces are overlaid with an ultra-thin electrically conductive metal coating. The first and second surfaces form electrically conductive paths at regions where the metal coating of the first and second layer contact one another. The contact of the surfaces overlaid with metal coating is sufficient to join the first and second substrates to one another. Preferred metal coatings comprise gold (Au). Methods of making such separator assemblies are also provided.
摘要:
A method for depositing a hydrophilic and electrically conductive layer onto a bipolar plate substrate for a fuel cell in a one step process. The method includes mixing a solution of a conductive material, such as gold particles, and a hydrophilic material, such as silicon dioxide particles, in a suitable solvent, such as ethanol. The solution is then deposited on the bipolar plate substrate by any suitable low cost process. Once the solution dries and the ethanol has evaporated, a thin layer of the conductive and hydrophilic particles remains on the substrate. In one embodiment, the conductive particles are significantly larger than the hydrophilic particles to provide both the desirable hydrophilicity and the low contact resistance.
摘要:
Devices comprising an electrochemical conversion assembly comprise a plurality of electrochemical conversion cells, and a plurality of electrically conductive bipolar plates, wherein the electrochemical conversion cells are disposed between the adjacent bipolar plates. The electrochemical conversion assembly further comprises a plurality of conversion assembly gaskets, wherein the respective conversion assembly gaskets are molded onto corresponding ones of the plurality of bipolar plates. The conversion assembly gaskets comprise a mixture including polyvinylidene fluoride (PVDF).
摘要:
A bi-polar plate is provided for a fuel cell stack. The bi-polar plate has improved surface wettability. The bi-polar plate includes a body including at least approximately ninety percent by weight of a metal and defining at least one flow channel. At least about 0.05 percent and up to 100 percent by weight of silicon is disposed on a surface of the at least one flow channel to form a high energy surface to form a high energy surface for the bi-polar plate. This can be achieved by adding from 0.5 to 10 weight % silicon to the steel. The percent of silicon is pre-determined based on a desired wettability of the high energy surface of the at least one flow channel.