Abstract:
A co-fired hermetically sealed feedthrough is attachable to an active implantable medical device. The feedthrough comprises an alumina dielectric substrate comprising at least 96 or 99% alumina. A via hole is disposed through the alumina dielectric substrate from a body fluid side to a device side. A substantially closed pore, fritless and substantially pure platinum fill is disposed within the via hole forming a platinum filled via electrically conductive between the body fluid side and the device side. A hermetic seal is between the platinum fill and the alumina dielectric substrate, wherein the hermetic seal comprises a tortuous and mutually conformal interface between the alumina dielectric substrate and the platinum fill.
Abstract:
A band stop filter is provided for a lead wire of an active medical device (AMD). The band stop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the band stop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the band stop filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the band stop filter is integrated into a TIP and/or RING electrode for an active implantable medical device.
Abstract:
A co-fired hermetically sealed feedthrough is attachable to an active implantable medical device. The feedthrough comprises an alumina dielectric substrate comprising at least 96 or 99% alumina. A via hole is disposed through the alumina dielectric substrate from a body fluid side to a device side. A substantially closed pore, fritless and substantially pure platinum fill is disposed within the via hole forming a platinum filled via electrically conductive between the body fluid side and the device side. A hermetic seal is between the platinum fill and the alumina dielectric substrate, wherein the hermetic seal comprises a tortuous and mutually conformal interface between the alumina dielectric substrate and the platinum fill.
Abstract:
A header block is configured to be attachable to an implantable medical device. The header block includes a header block body and a connection port disposed in the header block body configured to receive an implantable lead. A conductor is disposed in the header block body electrically coupled to the connection port at a first end and connectable at a second end to the implantable medical device. An impeding device is electrically coupled in series along the length of the conductor and disposed within the header block body. The impeding device is configured to raise the high-frequency impedance of the conductor. The impeding device may include a bandstop filter or an L-C tank circuit.
Abstract:
A shielded component or network for an active medical device (AMD) implantable lead includes (1) an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, (2) a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and (3) an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to a account for a shift in its inductance to a second inductive value when shielded.
Abstract:
A self-centering ceramic washer is positioned between a feedthrough and a filter circuit board. The washer has openings through which first and second terminal pins extend. A first opening has an inner arcuate portion contacting the first terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. A second opening has an inner arcuate portion contacting the second terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. In an imaginary configuration with the first and second washer openings superimposed one on top of the other, the cumulative arcuate distance of the inner arcuate portions about one of the terminal pins, subtracting overlap, results in a gap between the superimposed washer openings that is less than a diameter of the first and second terminal pins so that the washer is prevented from lateral movement.
Abstract:
A self-centering ceramic washer is positioned between a feedthrough and a filter circuit board. The washer has openings through which first and second terminal pins extend. A first opening has an inner arcuate portion contacting the first terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. A second opening has an inner arcuate portion contacting the second terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. In an imaginary configuration with the first and second washer openings superimposed one on top of the other, the cumulative arcuate distance of the inner arcuate portions about one of the terminal pins, subtracting overlap, results in a gap between the superimposed washer openings that is less than a diameter of the first and second terminal pins so that the washer is prevented from lateral movement.
Abstract:
A self-centering ceramic washer is positioned between a feedthrough and a filter circuit board. The washer has openings through which first and second terminal pins extend. A first opening has an inner arcuate portion contacting the first terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. A second opening has an inner arcuate portion contacting the second terminal pin and an outer perimeter portion exposing the braze sealing the terminal pin to the insulator. In an imaginary configuration with the first and second washer openings superimposed one on top of the other, the cumulative arcuate distance of the inner arcuate portions about one of the terminal pins, subtracting overlap, results in a gap between the superimposed washer openings that is less than a diameter of the first and second terminal pins so that the washer is prevented from lateral movement.
Abstract:
An AIMD includes a ceramic base closed with a ceramic lid, both cooperatively separating body fluid and device sides. The lid and circuit board both have active and conductive pathways. A circuit board has active and ground conductive pathways. An anisotropic conductive layer disposed between the lid device side and the circuit board has a first thickness where a first conductive particle is in electrical contact with the lid and the circuit board active conductive pathways electrically connected to the active terminal of an electronic component on the circuit board, a second thickness where a second conductive particle is in electrical contact with the lid and the circuit board ground conductive pathways electrically connected to the ground terminal of the electronic component. The anisotropic conductive layer has a third, greater thickness where no conductive particles are in electrical contact with the lid and circuit board conductive active and ground pathways.
Abstract:
The present invention changes the magnet-mode of an active implantable medical device (AIMD) using a static strip magnet comprising at least a first, second and third magnet. The electronic circuits of the AIMD have been programmed to register when the static strip magnet has been swiped across the AIMD so that when the magnetic field-detection sensor detects a defined north and south polarity sequence of the first, second and third magnets, the electronic circuits have been programmed to enter into magnet-mode with electrical stimulation therapy of the body tissue and/or electrical sensing of biological signals from the body tissue being suspended, maintained in a preset mode, or placed in a programmed mode.