Abstract:
An embodiment method of indicating reception of a plurality of low-payload messages includes receiving the plurality of low-payload messages from respective user equipments (UEs). The method also includes generating a composite reception indication (RIND) containing a RIND for each of the plurality of low-payload messages. The method also includes broadcasting the composite RIND to the respective UEs.
Abstract:
Aspects of this disclosure mitigate interference in a time division duplexed frame by altering a transmission parameter of grant-based uplink transmissions upon determining that a portion of the grant-based transmission will coincide with the retransmission of a detected grant-free uplink transmission. In particular, a base station may determine that a grant-free retransmission is to occur over resources scheduled to carry a grant-based transmission, and then send a signal instructing a UE to delay, or puncture a portion, of the grant-based transmission. This may mitigate interference between the grant-based transmission and the grant-free transmission.
Abstract:
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons, such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
Abstract:
It is possible to reduce the processing intensity of blind detection by configuring user equipments (UEs) to search for fewer than all possible DCI formats defined for a physical downlink control channel (PDCCH), as this reduces the number of searches performed by the corresponding UE during blind detection. The UE may select the subset of DCI formats to search for during blind detection based on various criteria, such as an air interface configuration assigned to the UE, a UE group to which the UE belongs, a transmission mode used by the UE, a re-transmission scheme assigned to the UE, a characteristic (e.g., size, location) of the UE's search space, or a combination thereof.
Abstract:
Embodiments are provided for transmitting channel information, such as control channel information, using lower resources at the transmitter combined with using apriori information associated with channel information in the decoder of the receiver. The apriori information represent predictable information that can be predicted by the receiver and is not transmitted with the channel information by the transmitter. The transmitter determines the apriori information for the channel and codes the channel information into bits and fields excluding the apriori information. Upon receiving the channel information, the receiver determines the apriori information associated in accordance with previously received information. The apriori information is then provided as probability information for input to the decoder. The decoder then decodes the received information in accordance with the apriori information.
Abstract:
Different filtered-orthogonal frequency division multiplexing (f-OFDM) frame formats may be used to achieve the spectrum flexibility. F-OFDM waveforms are generated by applying a pulse shaping digital filter to an orthogonal frequency division multiplexed (OFDM) signal. Different frame formats may be used to carry different traffic types as well as to adapt to characteristics of the channel, transmitter, receiver, or serving cell. The different frame formats may utilize different sub-carrier (SC) spacings and/or cyclic prefix (CP) lengths. In some embodiments, the different frame formats also utilize different symbol durations and/or transmission time interval (TTI) lengths.
Abstract:
Diverse traffic types can be efficiently communicated in a simultaneous manner by dynamically selecting between contention-based and scheduling-based media access control (MAC) communication schemes. Such a mechanism may be particularly beneficial in networks having a contention-based access resources and scheduling based access resources. Contention-based resources and scheduling based resources may occur over a common period, and may be orthogonal in the frequency domain and/or in the code domain. The dynamic selection may be based on a traffic characteristic or a network characteristic, and may be performed on a packet-by-packet basis. The selection criteria may be updated dynamically to adapt to changing network conditions, and may be communicated to the various transmitters via control channels or higher layer signaling.
Abstract:
An embodiment method of indicating reception of a plurality of low-payload messages includes receiving the plurality of low-payload messages from respective user equipments (UEs). The method also includes generating a composite reception indication (RIND) containing a RIND for each of the plurality of low-payload messages. The method also includes broadcasting the composite RIND to the respective UEs.
Abstract:
A method for power control for uplink transmission is provided. In an embodiment, a method in a user equipment (UE) for reference signal (RS) relationship specific uplink (UL) transmission power control includes transmitting, by the UE, a first UL signal according to a first power control set including at least one of a first target power, a second target power, a DL reference signal (RS) for pathloss estimation, a pathloss compensation factor, and a transmit power command (TPC). The first power control set is determined according to a first RS relationship between one first RS and a first UL signal.
Abstract:
Example reference signal notification methods and apparatus are described. One example method includes sending a reference signal notification message by a network device, where the reference signal notification message includes time resource information of a reference signal. According to the embodiments of the present specification, the reference signal notification message is used to notify user equipment (UE) of a reference signal configuration, especially information about a channel state information reference signal (CSI-RS).