Abstract:
A method and device for sending a synchronization signal and a method and device for synchronization between base stations, include: determining, by a synchronization source base station according to a synchronization level of the synchronization source base station, a resource for sending an NLRS for clock synchronization between base stations, and according to the determined resource. In this way, one NLRS for clock synchronization between base stations is configured on each synchronization source base station, and the NLRS is sent on a resource determined according to a synchronization level, so that a synchronization base station that acquires the NLRS can determine the synchronization level of the synchronization source base station according to a resource for sending the NLRS.
Abstract:
In response to a user equipment (UE) sending data to a first network side device over a first channel and to a second network side device over a second channel, a method includes determining that the first channel separately overlaps the second channel and a third channel. The method further includes allocating, according to priorities of the first channel and the second channel, a first transmit power to the first subframe j and a second transmit power to the second subframe i. The first transmit power is less than or equal to a first power upper limit. A sum of the first transmit power and the second transmit power is less than or equal to a first threshold. A sum of third transmit power of the third subframe i+1 and the first power upper limit is less than or equal to a preset threshold.
Abstract:
The present disclosure discloses a data transmission method, a device, and a system, relates to the communications field, and can resolve a prior-art problem that a receive end cannot correctly receive data because a starting moment of sending information on a license-exempt spectrum cannot be determined. A specific solution is as follows: A first device detects first information of a first serving cell in a preset time period of a first subframe on a first time resource or a first time set of a subframe on a first time resource, determines a starting position of a second time resource according to the first information, and detects second information of the first serving cell in a second time set of a subframe on the second time resource. The present disclosure is used for data transmission.
Abstract:
The method includes determining a type of a first subframe, where the type of the first subframe is a first-type subframe, a second-type subframe, a third-type subframe, or a fourth-type subframe, where the second-type subframe includes an uplink control channel and a downlink channel, the uplink control channel is located after the downlink channel, and there is a guard period between the uplink control channel and the downlink channel. The fourth-type subframe includes an uplink channel and a downlink control channel, the uplink channel is located after the downlink control channel, and there is a guard period between the uplink channel and the downlink control channel. The method also includes transmitting data in the first subframe according to the type of the first subframe.
Abstract:
A method for detecting an uplink signal includes: detecting, by a micro base station according to configuration information about an uplink signal sent by a UE, whether the uplink signal is received in an uplink receive window of a macro base station, where the macro base station and the micro base station have synchronized clock rates, there is a fixed time difference t1 between the uplink receive window of the macro base station and an uplink receive window of the micro base station, and |t1|≧0; and if it is detected that the uplink signal is not received in the uplink receive window of the macro base station, after the micro base station advances the uplink receive window of the macro base station by a length of at least one cyclic prefix, detecting, by the micro base station, the uplink signal, and sending the uplink signal to the macro base station.
Abstract:
Embodiments of the present invention provide a resource configuration method and an apparatus. User equipment (UE) includes a receiving module and a processing module, where the receiving module is configured to receive a broadcast message sent by a control node and including at least one first resource pool, where the control node is a base station serving the UE or a group head UE of a group to which the UE belongs. The processing module is configured to receive a device to device (D2D) service or send a D2D service by using a resource in the at least one first resource pool.
Abstract:
Embodiments of the present invention disclose a method, a system and an equipment. A base station determines a first transmission subframe set for each of user equipments that directly communicate with each other to transmit uplink information within a predetermined time range and a second transmission subframe set for each user equipment to directly transmit data to another user equipment within the predetermined time range respectively. Intersection sets between a second transmission subframe set determined for any user equipment and a first transmission subframe set determined for another user equipment that directly communicates with the user equipment and between the second transmission subframe set determined for the any user equipment and a second transmission subframe set determined for the another user equipment that directly communicates with the user equipment are empty.
Abstract:
A data transmission method and user equipment is provides. The method includes: sending, by user equipment (UE), auxiliary scheduling information to a first part of or all of network side devices, an uplink transmission state of the UE is determined according to the auxiliary scheduling information, and perform scheduling on the UE according to the uplink transmission state of the UE, where the uplink transmission state is a first uplink transmission state in which uplink data can be simultaneously transmitted on an uplink carrier corresponding to all of the network side devices, or is a second uplink transmission state in which uplink data can be simultaneously transmitted on an uplink carrier corresponding to a second part of the network side devices; and transmitting, by the UE, data according to scheduling information of the second part of or all of the network side devices.
Abstract:
The present invention relates to a method and an apparatus for supporting user equipment in task execution, which are used to resolve a problem that a result of measurement and/or synchronization performed by user equipment is erroneous. In the method, a first network-side device acquires duration of a cell working state, where the duration of the cell working state includes duration for which a cell performs signal sending and/or duration for which the cell does not perform signal sending; and the first network-side device determines a time for user equipment to perform measurement and/or synchronization, where the time for the user equipment to perform measurement is within a range of duration for which a to-be-measured cell performs signal sending, and the time for the user equipment to perform synchronization is within a range of duration for which a serving cell performs signal sending.
Abstract:
The present invention provides a signal measurement method and apparatus, where the method includes: receiving, by user equipment UE, a measurement configuration message sent by a base station, where the measurement configuration message is used to indicate a reference signal type; performing, by the UE according to the reference signal type indicated by the measurement configuration message, signal quality measurement on a cell to obtain a measurement result; and sending, by the UE, the measurement result to the base station. The method provided in embodiments of the present invention is used to resolve a technical problem in the prior art that normal communication of UE cannot be ensured because RSRP and/or RSRQ of neighboring cells cannot be measured based on an existing reference signal when the neighboring cells use different carrier types.