Abstract:
Uplink requests for bandwidth and/or other types of communication resources are provided. In some embodiments, a communication device can access a mapping between quality of service (QoS) metrics and communication resources. The communication device can determine a value of the QoS (e.g., a guaranteed rate, a defined traffic priority, an amount of buffered data, etc.) and can determine a communication resource element using at least the mapping and the value of the QoS metric. The communication device also can configure an uplink request for communication resources based at least on the communication resource element. In addition, the communication device can send the uplink request.
Abstract:
This disclosure describes methods, wireless stations, and systems related to a flexible connectivity framework that controls transmitting power levels of wireless stations to a common access point based on information provided by the access point. For example, a method may be provided, wherein the method includes performing the operations of: determining a transmitting power level of a wireless access point; determining a target receiving power level of the wireless access point; transmitting an indication of the transmitting power level and the target receiving power level of the access point to one or more wireless stations; and receiving one or more data transmissions from the one or more wireless stations.
Abstract:
The disclosure relates to a method, system and apparatus for extending Bluetooth low energy (BLE) technology to conserve energy in multi-mode wireless devices. In one embodiment, the disclosure relates to a device comprising a first module configured for radio communication at a non-BLE communication mode; a second module to communicate at a BLE communication mode; and a controller for controlling the first and the second communication modules, the controller configured to direct the BLE communication mode to at least one of advertise or scan for information relating to the non-BLE communication mode.
Abstract:
Systems, apparatus, and methods for determining device-specific signal extension durations are disclosed. An example method includes determining a short interframe space (SIFS) time associated with the at least one processor; determining that a first processing time of the at least one processor exceeds a first predefined threshold, wherein the first processing time correspond to a time spent processing a symbol in a protocol data unit (PDU) exceeding a predetermined coded bit size threshold; determining that a second processing time of the at least one processor exceeds a second predetermined threshold, based at least in part on the first processing time; and determining that the second processing time exceeds the SIFS time.
Abstract:
This disclosure describes methods, apparatus, systems, and computer readable media related to: receiving one or more trigger frames from an access point at a wireless communication station, wherein each of the one or more trigger frames comprises allocation information for a transmission; executing a first transmission attempt at the wireless communication station using a first transmission method; determining the first transmission attempt is unsuccessful; executing one or more retransmission attempts at the wireless communication station using the first transmission method; determining the one or more retransmission attempts are unsuccessful; determining a number of unsuccessful retransmission attempts at the wireless communication station has met or exceeded a threshold; and activating a second transmission method at the wireless communication station for executing a second transmission attempt.
Abstract:
This disclosure describes systems, methods, and devices related to service set compression. A device may determine a wake-up frame comprising one or more fields, wherein the one or more fields indicate an action to be taken on a receiving device. The device may determine an identifier to be indicated in the wake-up frame. The device may determine a size of the identifier. The device may cause to compress the identifier forming a compressed output, wherein the identifier is compressed by applying a cyclic redundancy code (CRC) computation. The device may identify a portion of the compressed output. The device may cause to send the wake-up frame to a receiving device, wherein the wake-up frame comprises the portion of the compressed output based on the size of the identifier.
Abstract:
For example, an apparatus configured to cause a first Wake-Up Radio (WUR) wireless communication station (STA) to exchange a request frame and a response frame with a second WUR STA to set up a plurality of WUR parameters of a WUR mode at which the first WUR STA is to transmit one or more WUR wake-up frames configured for reception by a Wake-Up Receiver (WURx) of the second WUR STA, wherein the request frame is from the second WUR STA to the first WUR STA, and the response frame is from the first WUR STA to the second WUR STA in response to the request frame; to transmit an unsolicited update frame to the second WUR STA to update one or more WUR parameters of the plurality of WUR parameters; and to receive an Acknowledgement (Ack) frame from the second WUR STA to acknowledge the unsolicited update frame.
Abstract:
This disclosure describes systems, methods, and devices related to a trigger-based null data packet (NDP) for channel sounding system. A device may send a trigger frame to a group of station devices, the group of station devices including a first station device, the trigger frame indicating a high efficiency (HE) long training field (HE-LTF) mode and a guard interval duration. The device may identify a HE trigger-based (TB) null data packet (NDP) received from the first station device, the HE TB NDP including a first packet extension field, wherein the HE TB NDP is associated with the HE-LTF mode and the guard interval duration indicated in the trigger frame. The device may send a downlink NDP including a second packet extension field, a second HE-LTF mode, and a second guard interval duration. The device may determine channel state information based on HE TB NDP received from the first station device.
Abstract:
Methods and apparatus to perform multi-band link aggregation in a wireless network are disclosed. An example apparatus includes a buffer controller to store (A) a first set of data packets that have been received on a first interface and (B) a second set of data packets that have been received on a second interface into a buffer, the first and second sets of data packets being received from a wireless device during a same time frame; and a window determiner to control a first bitmap corresponding to the first set of data packets received on the first interface and a second bitmap corresponding to the second set of data packets received on the second interface, a first size of the first bitmap and a second size of the second bitmap being smaller than a third size of the buffer.
Abstract:
This disclosure describes methods, apparatuses, and wireless stations related to waking up low power radios. In particular, a wireless station is disclosed that may identify a first management frame from a first wireless station a first management frame from a first wireless station. The wireless station may cause to allocate one or more group identifications (IDs) to the first wireless station. The wireless station may cause to generate a bitmap corresponding to the allocation of the one or more group IDs to the first wireless station. The wireless station may cause to send a second management frame to the first wireless station of one or more wireless stations, wherein the second management frame comprises the bitmap.