Abstract:
A high-strength cold-rolled steel sheet having a tensile strength (TS) of 1150 MPa or more and excellent elongation and delayed fracturing resistance, as well as a method for manufacturing the steel sheet. The steel sheet has a chemical composition containing, by mass %, C: 0.16% to 0.30%, Si: 1.20% to 2.20%, Mn: 1.50% to 2.50%, P: 0.05% or less, S: 0.005% or less, Al: 0.10% or less, N: 0.007% or less, at least one of Ti and Nb, and the balance being Fe and inevitable impurities, wherein the combined mass % of Ti and Nb is 0.04% to 0.15%, and a multi-phase microstructure including ferrite having an average crystal grain diameter of 3 μm or less in an amount of 45% to 65% in terms of volume fraction, tempered martensite having an average crystal grain diameter of 2 μm or less in an amount of 35% to 55% in terms of volume fraction, and optionally non-recrystallized ferrite having an average crystal grain diameter of 5 μm or less in an amount of 5% or less.
Abstract:
A steel sheet contains C: 0.15% to 0.22%, Si: 1.0% to 2.0%, Mn: 1.7% to 2.5%, P: 0.05% or less, S: 0.02% or less, Al: 0.01% to 0.05%, N: 0.005% or less, O: 0.01% or less, and the balance being iron and unavoidable impurities while satisfying [Si]/[Mn]≧0.5 ([Si] and [Mn] represent Si and Mn contents, wherein the steel sheet has a structure including, in terms of area fraction, 60% to less than 100% of tempered martensite, 5% or less including 0% of untransformed austenite, and the balance being ferrite, and the ferrite has an average crystal grain size of less than 3.5 μm, wherein less than 10 particles/100 μm2 of Si—Mn compound oxide particles having a circle equivalent diameter of 5 μm or less are present on a surface of the steel sheet, and the surface is covered with Si-based oxide at a coverage of 1% or less.
Abstract:
A high-strength cold-rolled steel sheet has a composite structure containing 0.15 to 0.25% by mass of C, 1.8 to 3.0% by mass of Mn, and 0.0003 to 0.0050% by mass of B, and having a ferrite volume fraction of 20% to 50%, a retained austenite volume fraction of 7% to 20%, a martensite volume fraction of 1% to 8%, and the balance containing bainite and tempered martensite, and in the composite structure, ferrite has an average crystal grain diameter of 5 μm or less, retained austenite has an average crystal grain diameter of 0.3 to 2.0 μm and an aspect ratio of 4 or more, martensite has an average crystal grain diameter of 2 μm or less, a metal phase containing both bainite and tempered martensite has an average crystal grain diameter of 7 μm or less, the ratio of the volume fraction of tempered martensite to the volume fraction of a metal structure other than ferrite is 0.60 to 0.85, and the average C concentration in retained austenite is 0.65% by mass or more.
Abstract:
A hot rolled steel sheet has a chemical composition including, by mass %, C: 0.060% to 0.120%; Si: 0.10% to 0.70%; Mn: 1.00% to 1.80%; P: 0.10% or less; S: 0.010% or less; Al: 0.01% to 0.10%; N: 0.010% or less; Nb: 0.010% to 0.100%, wherein Nb is contained so that content of solute Nb is 5% or more relative to the total Nb content; the balance being Fe and incidental impurities. The hot rolled steel sheet has a microstructure containing ferrite of not more than 15 μm in average crystal grain diameter by a volume fraction of not less than 75%, the balance being low-temperature-induced phases. The hot rolled steel sheet can be suitably utilized for manufacturing a cold rolled steel sheet or hot-dip galvanized steel sheet having a tensile strength of 590 MPa or more, excellent in material homogeneity and capable of giving excellent cold rolling property.
Abstract:
A steel sheet includes a microstructure containing a volume fraction of 20% to 55% of ferrite having an average grain size of 7 μm or less, a volume fraction of 5% to 15% of retained austenite, a volume fraction of 0.5% to 7% of martensite having an average grain size of 4 μm or less, and a structure composed of bainite and/or tempered martensite and having an average grain size of 6 μm or less, and a difference in nano-hardness between ferrite and the structure composed of bainite and/or tempered martensite being 3.5 GPa or less and a difference in nano-hardness between the structure composed of bainite and/or tempered martensite and martensite being 2.5 GPa or less.
Abstract:
A high strength cold rolled steel sheet has a chemical composition including, by mass %, C: 0.06 to 0.13%, Si: 1.2 to 2.3%, Mn: 0.6 to 1.6%, P: not more than 0.10%, S: not more than 0.010%, Al: 0.01 to 0.10% and N: not more than 0.010%, the balance comprising Fe and inevitable impurities. The steel sheet includes a microstructure containing not less than 90% in terms of volume fraction of ferrite with an average grain diameter of less than 20 μm and 1.0 to 10% in terms of volume fraction of pearlite with an average grain diameter of less than 5 μm. The ferrite has an average Vickers hardness of not less than 130. The steel sheet has a yield ratio of not less than 65% and a tensile strength of not less than 590 MPa.