摘要:
A method for manufacturing an inductive write head having a metal write gap layer. The method reduces the number of necessary process steps and avoids corrosion of other write head elements such as magnetic back gap.
摘要:
A magnetic write head structure that maximizes write field strength while minimizing stray fields. The write pole structure maximizes write field strength by minimizing saturation of the magnetic pole tips, and minimizes stray field writing by preventing magnetic fields from extending laterally from the sides of the magnetic pole. The write head structure includes a write pole having a pole tip configured with a stair notched shape and a steep shouldered base beneath the stair notched portion. This configuration maximizes the amount of flux that can be delivered to the pole tip while also avoiding stray fields. The magnetic pole can also be configured with wing shaped extensions that extend laterally from the pole tip region but which are recessed from the ABS by a desired amount. The magnetic write head structure can be manufactured by forming a magnetic pole with a raised portion, depositing a write gap material over the magnetic pole and then forming a magnetic pedestal over the magnetic pole and write gap, the pedestal having a width significantly smaller than the width of the raised portion of the magnetic pole, a first ion mill can then be performed to notch and trim the magnetic pole. Then a non-magnetic layer such as alumina can be deposited and a second ion mill performed to form a stair notched configuration. An alumina bump can be formed prior to ion milling to provide a mask for forming the laterally extending, recessed wings in the pole tip of the magnetic pole.
摘要:
A magnetic write head structure that maximizes write field strength while minimizing stray fields. The write pole structure maximizes write field strength by minimizing saturation of the magnetic pole tips, and minimizes stray field writing by preventing magnetic fields from extending laterally from the sides of the magnetic pole. The write head structure includes a write pole having a pole tip configured with a stair notched shape and a steep shouldered base beneath the stair notched portion. This configuration maximizes the amount of flux that can be delivered to the pole tip while also avoiding stray fields. The magnetic pole can also be configured with wing shaped extensions that extend laterally from the pole tip region but which are recessed from the ABS by a desired amount. The magnetic write head structure can be manufactured by forming a magnetic pole with a raised portion, depositing a write gap material over the magnetic pole and then forming a magnetic pedestal over the magnetic pole and write gap, the pedestal having a width significantly smaller than the width of the raised portion of the magnetic pole, a first ion mill can then be performed to notch and trim the magnetic pole. Then a non-magnetic layer such as alumina can be deposited and a second ion mill performed to form a stair notched configuration. An alumina bump can be formed prior to ion milling to provide a mask for forming the laterally extending, recessed wings in the pole tip of the magnetic pole.
摘要:
A method for making a write pole in a perpendicular magnetic recording write head uses a metal mask to pattern the primary resist and only ion milling during the subsequent patterning steps. A layer of primary resist is deposited over the magnetic write pole material and a metal mask layer is deposited on the primary resist layer. An imaging resist layer is formed on the metal mask layer and lithographically patterned generally in the desired shape of the write pole. Ion milling without a reactive gas is then performed over the imaging resist pattern to pattern the underlying metal mask layer, which is then used as the mask to define the shape of the primary resist pattern. Ion milling with oxygen is then performed over the metal mask pattern to pattern the underlying primary resist. Ion milling without a reactive gas is then performed over the primary resist pattern to form the underlying write pole.
摘要:
A magnetic write head having a metal, non-magnetic write gap that extends only partially to the magnetic back gap, the remainder of the distance between the pole tip and the back gap being a magnetic material. The elimination of the seed layer reduces the amount of milling required to perform the desired notching needed to form a self aligned pedestal on the first pole and voids electrolytic corrosion of the back gap during plating.
摘要:
A system for improving drift compensation for ion mill applications defines a reference step for purposes of time duration. The reference step is controlled by an end point detector and monitored for use with subsequent process steps. The time duration for a subsequent step is adjusted as a percentage of the reference step. A time scaling factor determines the actual duration of the subsequent step. Rather than directly using times of step duration, the system uses a percentage of the reference step for the latter step. The duration of the reference step varies depending on the tool drift. The overall duration is changed in the same proportion as the duration of the reference step, and thereby compensates for the influence of drift on the end product.
摘要:
A method planarizes a first pole piece layer of a write head by lapping without delaminating the first pole piece layer from an underlying second read gap layer on a wafer substrate. This is accomplished by separating or dicing the first pole piece material layer in a field region about rows and columns of first pole piece layers of magnetic head assemblies so as to reduce the stress of the first pole piece material layer in the field. Accordingly, when the wafer substrate is lapped, such as by chemical mechanical polishing (CMP), a reduced stress prevents the first pole piece material layer from delaminating from the second read gap layer during the lapping operation.
摘要:
A system for improving drift compensation for ion mill applications defines a reference step for purposes of time duration. The reference step is controlled by an end point detector and monitored for use with subsequent process steps. The time duration for a subsequent step is adjusted as a percentage of the reference step. A time scaling factor determines the actual duration of the subsequent step. Rather than directly using times of step duration, the system uses a percentage of the reference step for the latter step. The duration of the reference step varies depending on the tool drift. The overall duration is changed in the same proportion as the duration of the reference step, and thereby compensates for the influence of drift on the end product.
摘要:
A method for making a write pole in a perpendicular magnetic recording write head uses a metal mask to pattern the primary resist and only ion milling during the subsequent patterning steps. A layer of primary resist is deposited over the magnetic write pole material and a metal mask layer is deposited on the primary resist layer. An imaging resist layer is formed on the metal mask layer and lithographically patterned generally in the desired shape of the write pole. Ion milling without a reactive gas is then performed over the imaging resist pattern to pattern the underlying metal mask layer, which is then used as the mask to define the shape of the primary resist pattern. Ion milling with oxygen is then performed over the metal mask pattern to pattern the underlying primary resist. Ion milling without a reactive gas is then performed over the primary resist pattern to form the underlying write pole.
摘要:
A moisturizing process for slurry delivery tubes in chemical mechanical polishing is disclosed. A mist of deionized water is dispensed directly into the tubes each time a high pressure spray bar automatically cycles. The tips of the tubes are kept wet enough to prevent the slurry from drying in and clogging the tubes. A fan-type spray nozzle is located in the bar and, when pressurized, dispenses a fine mist. A direction of the nozzle is modified to avoid overspraying the tool. Only the tips of the delivery tubes and part of the polishing pad receive the misted spray. The slurry is moisturized and never dries at the point of use as the mist is dispensed with each cycle of a pad rinse feature.