摘要:
A hand changing device for industrial robots, having a changer body (10) designed to be attached to the robot arm (92) and a changer adapter (50) carrying a robot hand. The changer body (10) and the changer adapter (50) are separate components designed to be coupled detachably. The changer adapter (50) carrying the robot hand (74) is clamped by the changer body (10) by the engagement of a plurality of clamping balls retained within the changer body (10) and a ball engaging part formed in the changer adapter (50). The changer body (10) is provided with a fluid-driven piston (20) to move the clamping balls between two positions, namely, the clamping position and the idle position.
摘要:
A welding method in an automatic welding machine in which welding is performed by impressing a voltage across a wire, which is transported along a welding path by a robot, and a workpiece to produce an arc at the tip of the wire, and transporting the wire tip along the welding path by the robot while the wire is successively laid out in small increments. The method includes storing a number of welding conditions in memory which conditions comprise welding voltage, wire feed speed, preflow duration, crater processing duration and postflow duration selecting prescribed welding conditions by the program, jetting a gas toward the workpiece for the preflow duration; thereafter generating a selected welding voltage and laying out the wire at a selected wire feed speed to start welding. The welding conditions are selected by the program at a welding starting point, and a predetermined welding voltage is generated for the crater processing duration, followed by performing crater processing by laying out the wire at a predetermined wire feed speed, and thereafter performing postflow processing by jetting gas toward the workpiece for the postflow duration; these welding conditions selected by the program at a welding end point.
摘要:
An industrial robot hand-holding device having a hand-holding unit attached to the extremity of the robot wrist, a hand-attaching unit having mounted thereon one of a plurality of diverse robot hands and being detachably attached to the hand-holding unit, and a safeguard unit provided between the extremity of the robot wrist and the hand-holding unit so as to safeguard the robot hand against an extraordinary force applied to or acting on the robot hand.
摘要:
A double hand for an industrial robot comprises a hand body, two sets of work clamping units and two sets of actuators to drive the work clamping units, respectively, for opening and closing motions. The hand body has a rear end attachable to the free end of the robot wrist of an industrial robot, a front end and opposite sides extending between the front end and the rear end. Each work clamping unit has a pair of gripping fingers and the pairs of gripping fingers of the two sets of work gripping units are supported pivotally at the roots thereof on the opposite sides of the hand body for turning motion. The paired gripping fingers are turned about the respective roots thereof in opposite directions by the associated actuator.
摘要:
A robot hand provided with fingers driven by a double acting cylinder and supplied working liquid pressure through two, 2-position, 5-port-type, single solenoid, electromagnetic valves, wherein: (a) an outlet of a first electromagnetic valve is connected with the inlet thereof in response to the ON position of the solenoid thereof and is connected with the inlet of a first chamber of the double acting cylinder; (b) an outlet of a second electromagnetic valve is connected with the inlet thereof in response to the OFF position of a second chamber of the double acting cylinder; (c) an outlet of the first electromagnetic valve is connected with the inlet thereof in response to the OFF position of the solenoid thereof and is plugged; (d) an outlet of the second electromagnetic valve is connected with the inlet thereof in response to the ON position of the solenoid thereof and is plugged; and (e) a working liquid pressure source is connected with the inlet of the first and second electromagnetic valves. This robot hand is capable of maintaining an object in a held position even in the event of an electric power supply failure.
摘要:
A sliding mode including a process of feeding back an amount of twist for controlling a servo loop is controlled by reading the position of a servomotor and the position of a mechanical actuator drivable by the servomotor (SP1), calculating an amount of twist which is an error (SP2), calculating a switching surface Suf with a value produced by filtering the amount of twist (SP3), and selecting a switching input with the produced value (SP4, SP5, SP6). The amount of twist is filtered by a filter which has a numerator and a denominator which are of a first order. The filter allows a system to be realized which suffers less vibration and is robust against inertia fluctuations.
摘要:
A robot control method based on an acceleration/deceleration time constant wherein the acceleration/deceleration time constant of a servomotor is set for an optimum value for each block, to thereby control the operation of the robot. A reaching speed (Vu) is determined from an amount of movement (X) of a block, and based on the reaching speed, a maximum torque (Tmax) of the servomotor is determined and then a static load torque (T.sub.wn) is subtracted from the maximum torque (Tmax) to determine an acceleration torque (Ta.sub.n). Thereafter, based on the acceleration torque (Ta.sub.n) and the load inertia of the servomotor, an acceleration (a.sub.n) is determined and an acceleration/deceleration time constant (.tau.) is determined from the acceleration (a.sub.n), and accordingly, an optimum acceleration/deceleration time constant is determined.
摘要:
An industrial robot is provided with robot hands (44, 46) capable of being moved by turning actions between a workpiece handling position to which a workpiece is transported and at which the workpiece is fed to the chucking device (10) of a machine tool and a standby position away from the workpiece handling position. The robot also incorporates a robot hand (42) capable of being turned in a plane at the workpiece handling position to align a workpiece with the chucking device (10) of the machine tool, and a pneumatic cylinder actuator (48) capable of linearly moving the robot hand (42) toward the chucking device (10) and away from the chucking device (10) so as to remove a workpiece from the chucking device (10). The industrial robot can be readily fixed to the bed of the machine tool by bolts, for example.
摘要:
A piping arrangement in which a plurality of sealing means (70 through 78) are arranged on a sheathing pipe (42) provided as an outer pipe of a robot wrist (18) of a laser robot to thereby define annular chambers (84 through 90); the annular chamber (86 and 90) being used as a gas-carrying annular chamber for transferring an assist gas from one line to another, and a liquid-carrying chamber for transferring a liquid coolant from one line to another; the assist gas and the liquid coolant being supplied and returned through the gas-carrying annular chamber and the liquid-carrying annular chamber (84 and 90). Pipes (22, 24, 26, and 28) are arranged close to and along the outer surfaces of a robot forearm (16) and the robot wrist (18), and predetermined annular chambers (84, 88) other than the gas-carrying annular chamber (86) and the liquid-carrying annular chamber (90) being used as pressure chambers provided with sealing means (70 through 78) arranged thereamong, to thereby prevent leakage of the assist gas from the gas-carrying annular chamber and leakage of the liquid coolant from the liquid-carrying annular chamber.
摘要:
A sliding mode control method with a feedforward compensation function achieves a control response characteristic adapted to varying system parameters and properly maintains a manipulated variable affecting a controlled object. A position deviation (.epsilon.), speed deviation (.epsilon.), predicted maximum and minimum inertias (Jmax, J0), predicted maximum and minimum gravity loads (GRmax, GRmin), switching variable (s), integral element (.intg.(.epsilon.+C.multidot..epsilon.)), second differential (.theta.r) of the command position, and actual speed (.theta.) are periodically calculated on the basis of a command position (.theta.r), actual position (.theta.), inertia data, and gravity load data (100-102, 104, 107, 110, 114, 117, 120, 123, 127). Even when a nonlinear system parameter such as inertia varies, a proper torque command (T) is periodically calculated, as a manipulated variable, on the basis of a switching amount (T1) obtained by adding together five terms calculated in accordance with respective positive or negative signs of the switching variable, position deviation, integral element, second differential, and actual speed (105, 106, 108, 109, 111-113, 115, 116, 118, 119, 121, 122, 124 to 126, 128-131).