Abstract:
A control device for cylinder reducing operation of a multi-cylinder engine for a vehicle controls the number of working cylinders in the engine more appropriately for fuel economy while ensuring the operational stability of the engine and comfortable drivability of the vehicle. The control device comprises a detector detecting engine output torque and judges if cylinder reducing operation is to be executed while referring to the engine output torque. Because of the detection of engine output torque, cylinder reducing operation will be executed as long as torque requested of the engine is available from the reduced number of working cylinders, thereby ensuring the generation of torque required in operating the engine while saving fuel as much as possible. Through a learning process, criteria for the judgment of execution of cylinder reducing operation are modified to be adapted for any variation of engine output performances.
Abstract:
An active noise control system is provided which cancels a noise using a sound radiated from a speaker driven by an output from an adaptive notch filter. The system employs output signals from an adder or simulation cosine-wave and sine-wave signals, an error signal or an output signal from a microphone, and a compensated signal from the adder or a signal available for acoustically transferring an output from the adaptive notch filter to the microphone in accordance with initial transfer characteristics to update the filter coefficient of the adaptive notch filter. This configuration allows the system to operate with stability even when the acoustic transfer characteristics vary with time or under circumstances where there exists a significant amount of incoming external noises. The system also prevents overcompensation for a noise at the ears of a passenger in a vehicle, thereby proving an ideal noise reduction effect.
Abstract:
An engine-driven work machine having a target engine speed selection unit and a control unit. The target engine speed selection unit selects and specifies an arbitrary target engine speed from among a plurality of target engine speeds that is set in stepwise fashion. The control unit electrically controls the opening and closing of a throttle valve so that the actual engine speed conforms to the specified target engine speed.
Abstract:
A detecting means easily detects the abnormality of a generator having a plurality of power supply units. Each of the power supply units includes one of a plurality of output windings L1 to L4, which are wound independently of each other around single iron core, and one of rectifiers 2 to 5 that are provided in correspondence to the output windings and produces an integrated output. Controllers 33 to 35 control the rectifiers such that the output voltage corresponds with a target. A voltage deviation judgment section 37 outputs the abnormal signal when one of the output voltages of the rectifiers 2 to 5 is different from remains. A current deviation judgment section 39 outputs the abnormal signal when one of the output currents of the rectifiers 2 to 5 is different from remains. When the abnormal signal is detected, the outputs of the rectifiers 2 to 5 are stopped.
Abstract:
In a hybrid vehicle of the invention, the control procedure corrects an idling intake air flow Qidl to enable an engine immediately after its start to generate an output power Pe that is substantially equivalent to an engine power demand Pe*. After the correction, the control procedure controls the engine to have an intake air flow Qe with reflection of an intake air flow correction value Qec and controls a motor MG1 to generate electric power by using the output power Pe of the engine and to charge a battery with the generated electric power within an input limit Win of the battery. The control of the invention ensures that the output power Pe of the engine does not exceed the engine power demand Pe* in restriction of the charge level of the battery. This arrangement effectively prevents the state of charge SOC of the battery, which is charged with the electric power generated by the motor MG1, from exceeding the input limit Win.
Abstract:
An active noise control system is capable of canceling out noise in the passenger compartment of a vehicle based on low-frequency road noise. The active noise control system has a feed-forward control unit for being supplied with reference signals highly correlated to noise from a noise source and generating a noise cancellation signal which is out of phase to noise in the passenger compartment of the vehicle, and a canceling sound generating unit disposed in the passenger compartment for generating a noise canceling sound in response to the noise cancellation signal from said feed-forward control unit. The active noise control system also has microphones for generating reference signals which are positioned respectively near the base of the front seat, near the center of a roof, and within a trunk compartment, i.e., respectively at vibrational antinodes of a primary or secondary acoustic normal mode of the passenger compartment in the longitudinal direction thereof. Output signals from the microphones are supplied as the reference signals.
Abstract:
An active noise control system for reducing road noise of low frequency generated inside the cabin of a vehicle is provided. The active noise control system includes a noise detector, a signal generator for processing the input noise signal to generate a signal for producing noise canceling waves, a limiting amplifier having a specified threshold value for variably amplifying the processed signal so that the amplitude of output signal will not exceed the threshold value, and an electrical acoustic converter for producing noise canceling acoustic waves in accordance with the output signal.
Abstract:
A detecting means easily detects the abnormality of a generator having a plurality of power supply units. Each of the power supply units includes one of a plurality of output windings L1 to L4, which are wound independently of each other around single iron core, and one of rectifiers 2 to 5 that are provided in correspondence to the output windings and produces an integrated output. Controllers 33 to 35 control the rectifiers such that the output voltage corresponds with a target. A voltage deviation judgment section 37 outputs the abnormal signal when one of the output voltages of the rectifiers 2 to 5 is different from remains. A current deviation judgment section 39 outputs the abnormal signal when one of the output currents of the rectifiers 2 to 5 is different from remains. When the abnormal signal is detected, the outputs of the rectifiers 2 to 5 are stopped.
Abstract:
An abnormality of a generator provided with a plurality of power supply units is easily detected. Each of the power supply units includes each of output windings L1 to L4, which are wound independently of each other around the single iron core, and each of rectifier circuits 2 to 5. The power supply units produce an integrated output power. Control means 33 to 35 control the rectifier circuits such that an output voltage agrees with a target voltage Vref. In a case where an added up power W becomes a power target value Wref, when the added up current I further increases, a power comparing section 39 reduces the target voltage Vref to prevent the rectifier circuits from outputting power. Further, when the added up current I exceeds a current upper limit ILMT, a gate pulse is stopped.
Abstract:
An improved thermoplastic resin composition obtained by subjecting a mixture of at least an engineering plastic and a rubber material containing an .alpha.,.beta.-unsaturated carboxylic acids or their derivatives, to dynamic heat treatment in the presence of a carbon radical inducing agent. The thermoplastic resin composition of the invention excels in thermal resistance, rigidity, impact resistance, and moldability.