Abstract:
A method and transmitting system for processing data are discussed. The method according to an embodiment includes randomizing enhanced data; first encoding the randomized enhanced data to add first parity data for error correction, thereby forming a frame; dividing data of the frame into a plurality of groups, wherein the plurality of groups have a same size; first interleaving data of each group; second interleaving the first-interleaved data; encoding signaling information at a code rate; and transmitting a broadcast signal including the second-interleaved enhanced data and the encoded signaling information. Second encoding on the randomized enhanced data is selectively performed, wherein, when the second encoding is performed, second parity data for error detection are added to the randomized enhanced data. The signaling information includes transmission parameters to indicate whether the second encoding is performed.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.
Abstract:
A digital broadcasting system for transmitting/receiving a digital broadcasting signal and a data processing method are disclosed. A program table information has an identifier identifying mobile service data and main service data in a broadcasting signal. The program table information is multiplexed with the mobile service data and main service data. Then, broadcast receiving system can receive and output the mobile service data by parsing the program table information and using the identifier.
Abstract:
A broadcasting signal receiver and a method for transmitting/receiving a broadcasting signal are disclosed. An identifier of a cell is set in the broadcasting signal and, if the cell is changed, channel information of the changed cell can be obtained from program table information having the channel information of the cell. Accordingly, the broadcasting signal receiver can continuously output a program although the cell is changed.
Abstract:
A DTV transmitting system includes a frame encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The frame encoder builds an enhanced data frame and adds parity data into the data frame. The frame encoder further divides the data frame into first and second sub-frames including first and second portions of the parity data, respectively, and permutes a plurality of the first sub-frames and a plurality of the second sub-frames, respectively. The randomizer randomizes enhanced data in the permuted sub-frames, and the block processor codes the randomized data at a rate of 1/N1. The group formatter forms a group of enhanced data having one or more data regions and inserts the 1/N1 coded data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into enhanced data packets.
Abstract:
A digital television receiving system includes a first known data detector, a second known data detector, and a selector. The first known data detector detects a location of a first known data sequence in a broadcast signal by calculating a first correlation value between the broadcast signal and a first reference known data sequence. Similarly, the second known data detector detects a location of a second known data sequence in the broadcast signal by calculating a second correlation value between the broadcast signal and a second reference known data sequence. The selector selects the location information detected by one of the first and second known data detectors with a greater correlation value.
Abstract:
A digital broadcasting system and a method of processing data are disclosed. Herein, additional encoding is performed on mobile service data, which are then transmitted, thereby providing robustness in the processed mobile service data, so that the mobile service data can respond more strongly against fast and frequent channel changes. In a transmitting system including a service multiplexer and a transmitter located in a remote site, a method of processing data of the transmitting system includes comparing an output data rate of the service multiplexer and a transmission data rate of the transmitter, when a difference occurs between the two data rates, adjusting a burst size, wherein the burst transmits mobile service data, and encoding the mobile service data, and referring to the burst size so as to multiplex main service data and the encoded mobile service data in a burst structure.
Abstract:
A digital broadcast receiving system includes a known data detector, a carrier recovery unit, and a timing recovery unit. The known data detector may detect known data information inserted and transmitted from a digital broadcast transmitting system and using the known data information to estimate initial frequency offset. The carrier recovery unit may obtain initial synchronization by using the initial frequency offset, and may detect frequency offset from the received data by using the known sequence position indicator so as to perform carrier recovery. The timing recovery unit may detect timing error information from the received signal by using the known sequence position indicator so as to perform timing recovery.
Abstract:
A digital broadcast system including a broadcast receiving system and data processing method are disclosed. In the broadcast receiving system receiving broadcast signals, the broadcast receiving system includes a transmission parameter decoding unit, a known sequence detector, and a burst controller. The transmission parameter decoding unit detects information on a burst of a received signal from broadcast data having main service data and mobile service data multiplexed therein within a field of the received signal and outputs the detected information on the burst. The known sequence detector receives burst information from the transmission parameter decoding unit and uses the received burst information and known data position information included in the received data, so as to output burst control information. The burst controller uses the burst control information to control power supply of the broadcast receiving system.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.