Abstract:
A method is provided for transmitting a demodulation reference signal (DMRS) by a user equipment (UE) in a wireless communication system. The UE receives a cyclic shift field in an uplink scheduling assignment from a base station, allocates a first cyclic shift value of a first DMRS for a first layer and a second cyclic shift value of a second DMRS for a second layer, based on the cyclic shift field, and transmits the first DMRS and the second DMRS to the base station.
Abstract:
A method for transmitting an aperiodic sounding reference signal (SRS) to a base station by a user equipment (UE) in a wireless communication system, the method includes receiving, from the base station, an uplink grant or a downlink grant, with an indicator indicating a transmission of the aperiodic SRS; and transmitting, to the base station, the aperiodic SRS in a first uplink subframe; wherein the first uplink subframe is a subframe firstly configured after a second uplink subframe for the aperiodic SRS, wherein, if the uplink grant is received, the second uplink subframe is a subframe in which an uplink data signal scheduled by the uplink grant is transmitted, wherein, if the downlink grant is received, the second uplink subframe is a subframe in which an uplink control signal corresponding to the downlink grant is transmitted.
Abstract:
A method for mapping uplink data to a physical uplink shared channel (PUSCH) by a user equipment (UE) in a wireless communication system, the method includes receiving a configuration for a UE-specific aperiodic sounding reference signal (SRS) subframe from a base station; and mapping the uplink data to the PUSCH in the UE-specific aperiodic SRS subframe, wherein the UE-specific aperiodic SRS subframe includes a single carrier frequency division multiple access (SC-FDMA) symbol reserved for an aperiodic SRS, wherein the aperiodic SRS is selectively transmitted in the reserved SC-FDMA symbol to the base station, and the aperiodic SRS is transmitted in the reserved SC-FDMA symbol when triggered by the base station, and wherein the uplink data is mapped to SC-FDMA symbols other than the SC-FDMA symbol reserved for the aperiodic SRS in the UE-specific aperiodic SRS subframe in a case when the aperiodic SRS is not transmitted in the reserved SC-FDMA symbol.
Abstract:
A method of transmitting control signals in a wireless communication system includes multiplexing a first control signal with a second control signal in a slot, the slot comprising a plurality of orthogonal frequency division multiplexing (OFDM) symbols in time domain, the plurality of OFDM symbols being divided into a plurality of data OFDM symbols and a plurality of reference signal (RS) OFDM symbols, wherein the first control signal is mapped to the plurality of data OFDM symbols after the first control signal is spread by a base sequence in the frequency domain, the RS is mapped to the plurality of RS OFDM symbols, the second control signal is mapped to at least one of the plurality of RS OFDM symbols, and transmitting the first control signal and the second control signal in the slot.
Abstract:
A method and a user equipment (UE) are provided for transmitting uplink data in a wireless communication system. Uplink data is mapped to resource elements corresponding to a physical uplink shared channel (PUSCH) in a UE-specific aperiodic sounding reference signal (SRS) subframe. The UE-specific aperiodic SRS subframe includes a single carrier frequency division multiple access (SC-FDMA) symbol reserved for an aperiodic SRS. The aperiodic SRS is transmitted in the reserved SC-FDMA symbol when triggered by a base station. The uplink data is not mapped to the SC-FDMA symbol reserved for the aperiodic SRS regardless of whether the aperiodic SRS is transmitted in the reserved SC-FDMA symbol or not. The mapped uplink data is transmitted to the base station via the UE-specific aperiodic SRS subframe.
Abstract:
A method for transmitting, by a user equipment (UE), an aperiodic sounding reference signal (SRS) in a wireless communication system; and the UE are discussed. The method includes receiving a downlink control information (DCI) format, which schedules a physical uplink shared channel (PUSCH) and includes an SRS request for triggering transmission of an aperiodic SRS, from a base station (BS); detecting the SRS request; and transmitting, when the UE is not configured with a carrier indicator field (CIF), the aperiodic SRS to the BS on a first uplink (UL) component carrier (CC) in which the PUSCH is scheduled, or, when the UE is configured with the CIF, the aperiodic SRS to the BS on a second UL CC in which the PUSCH is scheduled with a value of the CIF.
Abstract:
A method for a terminal to communicate with a network using a plurality of frequency band cells, and the terminal for performing the method are discussed. The method according to one embodiment includes acquiring frequency bands information on which of frequency bands measurement can be performed and on which of the frequency bands measurement cannot be performed. The frequency bands information is acquired from outside of the terminal. The method according to the embodiment further includes performing measurement on the frequency bands on which measurement can be performed based on the frequency bands information; acquiring measurement result information on the plurality of frequency band cells based on the measurement; and communicating data with a network on the plurality of frequency band cells considering the measurement result information.
Abstract:
A method and apparatus for multiplexing reference signals in a predetermined number of Code Division Multiplexing (CDM) groups to balance power across Orthogonal Frequency Division Multiplexing (OFDM) symbols are disclosed. In a wireless communication system, orthogonal sequences used for spreading the reference signals are allocated such that the order of orthogonal sequences allocated to a subcarrier of one CDM group has a predetermined offset with respect to the order of orthogonal sequences allocated to a subcarrier of another CDM group, adjacent to the subcarrier of the one CDM group.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
A method for transmitting, by a base station, signals in a communication system. Control information for a subsidiary carrier band is transmitted to a mobile station via a primary carrier band. Data is transmitted to the mobile station via the subsidiary carrier band based on the control information and via the primary carrier band. Furthermore, the primary carrier band is a carrier frequency band which the mobile station initially attempts to access or via which information of a carrier aggregation configuration is transmitted. Additionally, the control information includes a logical index assigned to the subsidiary carrier band for the mobile station and a physical index of a frequency allocation band used as the subsidiary carrier band. The physical index corresponds to one of plural absolute frequency band indexes assigned to frequency allocation bands available in the communication system.