Abstract:
Methods and apparatus are provided for control overhead reduction. The UE configures one or more short transmission time interval regions over a normal TTI region shared by the UE and one or more other, each UE includes a self-contained control information sPDCCH occupying a control information region. The UE detects a cover signal, which indicates one or more resource elements in the sPDCCH control-information region that can be used for data transmission. The UE obtains data transmission from the REs in the SPDCCH control information region based on the detected cover signal. In one embodiment, the cover signal is a dedicated signal. In another embodiment, the cover signal is a common signal. In yet another embodiment, the cover signal is encoded in a downlink control information (DCI) intended for the UE. In one embodiment, the cover signal indicates one or more CCE REs to be excluded for data transmission.
Abstract:
A method of physical uplink control channel (PUCCH) resource allocation to increase multiplexing capacity in enhanced licensed assisted access (eLAA) is proposed. New design of Physical Uplink Control Channel (PUCCH) is proposed. Across frequency domain of the channel bandwidth, multiple resource block repetitions are allocated for different UEs for uplink PUCCH transmission to satisfy the occupied channel bandwidth requirement for unlicensed carrier access. In addition, the resource elements of a single PUCCH resource block are partially spread into different repetitions to increase multiplexing capacity and to resource peak to average power ratio (PAPR).
Abstract:
A method of channel access procedure and QoS provisioning is proposed. When more than one user equipments (UEs) contend uplink transmission for a given time slot in an unlicensed band, uplink listen-before-talk (LBT) scheme should perform in a proper way to reflect service prioritization. The base station first determines the Channel Access Priority (CAP) for uplink LBT, and then signals such CAP to the UE via PDCCH. Upon receiving the CAP, the UE performs LBT procedure with corresponding CAP before uplink transmission. For example, the CAP can be determined based on QoS class identifier (QCI) of the radio bearer or based on the MAC layer logical channel prioritization (LCP).
Abstract:
A method of uplink transmission to reduce peak-to-average power ratio (PAPR) in enhanced licensed assisted access (eLAA) is proposed. New design of Physical Uplink Control Channel (PUCCH) and Physical Uplink Shared Channel (PUSCH) is proposed. Across frequency domain of the channel bandwidth, multiple resource interlaces are allocated for different UEs for uplink PUCCH/PUSCH transmission to satisfy the occupied channel bandwidth requirement for unlicensed carrier access. In addition, uplink transmission with co-phasing terms are applied to reduce PAPR of the resulted waveform.
Abstract:
Methods and apparatus are provided for multiplexing DRS within a transmission burst for opportunistic spectrum access. In one novel aspect, DRS is not transmitted in a fractional subframe within a TXOP. In one embodiment, if the starting fractional subframe, which contains initial signal, occurs in a configured DMTC, DRS is transmitted in the first subframe next to the starting fractional subframe. In another embodiment, if DMTC starts from a complete subframe within a TXOP, DRS is transmitted in the first candidate position within a DMTC. In another novel aspect, in the DRS subframe, PDSCH is allocated in the PRBs outside the central PRBs (six or twenty-five PRBs). In one embodiment, the reservation signal can be used to satisfy the requirement of occupied bandwidth and continuity transmission. In another embodiment, the free REs in central PRBs carry the system information when required on the unlicensed band.
Abstract:
A method of small cell discovery and RSRP/RSRQ measurements in OFDM/OFDMA systems is proposed. A discovery reference signal (DRS) with low transmission frequency is introduced to support small cell detection within a short time, multiple small cell discovery, and accurate measurement of multiple small cells. The DRS consists of one or multiple reference signal types with the functionalities including timing and frequency synchronization, cell detection, RSRP/RSSI/RSRQ measurements, and interference mitigation. RE muting is configured for the DRS to reduce interference level from data to DRS for discovery and RSRP/RSRQ measurements for small cells.
Abstract:
A method of small cell discovery and RSRP/RSRQ measurements in OFDM/OFDMA systems is proposed. A discovery reference signal (DRS) with low transmission frequency is introduced to support small cell detection within a short time, multiple small cell discovery, and accurate measurement of multiple small cells. The DRS consists of one or multiple reference signal types with the functionalities including timing and frequency synchronization, cell detection, RSRP/RSSI/RSRQ measurements, and interference mitigation. RE muting is configured for the DRS to reduce interference level from data to DRS for discovery and RSRP/RSRQ measurements for small cells.