摘要:
This disclosure relates generally to methods and systems for color management in image/text printing or display systems, and more particularly to a system and method for automatically achieving spot color production through use of a plurality of gain matrices per spot color in determining spot color coordinates. Furthermore, this disclosure provides a means for mapping out-of-gamut target spot colors substantially near a boundary of the gamut of an image output device, such as a printer or display.
摘要:
Disclosed are color management methods and systems to adaptively tune colors for one or more image marking devices. Specifically, exemplary embodiments include methods and systems to create profiles for preference color matching. For example, Lab values associated with target node colors can be warped using a predefined function for special regions of interest.
摘要:
Exemplary embodiments provide a roll member that includes one or more controllable cells and methods for making and using the roll member to control an image (or toner) state thereon. The controllable cells can be disposed on a roll substrate and configured in a manner that each controllable cell can be addressed individually and/or as groups. Each controllable cell can be addressable to provide a surface vibration to release toner particles adhered/attracted thereto and can also be capable of sensing the toner state of the roll member and thus to control the image or toner state. In an exemplary embodiment, the disclosed roll member can be used as a donor roll for a development system of an electrophotographic printing machine to create controlled and desired toner powder cloud for high quality image development.
摘要:
To generate a reference database for a particular sensor in a multiple LED spectrophotometric system with a reduced number of test measurements taken from training samples, a first set of reflectance reference measurements are generated from a test target on to a reference sensor from a plurality of different LED emissions. A first spectral reconstruction reference matrix is computed by performing an operational characterization of the reference sensor from the first set of reflectance reference measurements. A second set of reflectance reference measurements from the test target is generated from a second subject sensor whose operation is to be personalized by the objective reference database. The second set of reflectance reference measurements are less in number than the first set. A second reconstruction matrix is computed by performing an operational characterization of the subject sensor from the second set of measurements. The second reconstruction matrix is adjusted by relating the second set of reflectance measurements to a set of corresponding reflectance measurements of the reference sensor, whereby the adjusting of the second matrix comprises computing an optimal solution spectral reconstruction matrix for the second sensor. The reference database is generated from the optimal solution spectral reconstruction matrix.
摘要:
Disclosed is a microelectromechanically tunable Fabry-Perot device and method of manufacturing tunable Fabry-Perot device and method of manufacturing. The F-P device comprises a first and second substrate which has partially reflective planar surfaces, and the partially reflective planar surfaces are separated by a predetermined separation distance and aligned to provide a F-P cavity, where one or more piezoelectric members are adapted to displace the first and second substrates when an electric field is applied.
摘要:
Disclosed is an image color management system and method for controlling an image output device. The method for controlling the image output device comprises generating an image output device profile LUT (look-up-table) characterizing the color profile of the image output device for a plurality of drift states associated with the image output device; generating a set of augmented basis vectors representing the LUT, L*a*b* values and multiple GCR/UCRs; storing the set of basis vectors in an image output device controller; and generating an image output device active profile associated with a current drift state of the image output device to convert image color data for display or printing by the image output device, wherein the image output device active profile is generated from the set of basis vectors.
摘要翻译:公开了一种用于控制图像输出装置的图像颜色管理系统和方法。 用于控制图像输出装置的方法包括:生成表征与图像输出装置相关联的多个漂移状态的图像输出装置的颜色特征图像的图像输出装置简档LUT(查找表); 生成表示LUT,L * a * b *值和多个GCR / UCR的增强基向量集合; 将所述一组基矢量存储在图像输出装置控制器中; 以及生成与所述图像输出设备的当前漂移状态相关联的图像输出设备活动轮廓,以转换由图像输出设备显示或打印的图像颜色数据,其中从所述一组基矢量生成所述图像输出设备活动简档。
摘要:
What is disclosed is a system and method for estimating tidal chest volume using 3D surface reconstruction based on an analysis of captured reflections of structured illumination patterns from the subject with a video camera. The imaging system hereof captures the reflection of the light patterns from a target area of the subject's thoracic region. The captured information produces a depth map and a volume is estimated from the resulting 3D map. The teachings hereof provide a non-contact approach to patient respiration monitoring that is particularly useful for infant care in a neo-natal intensive care unit (NICU), and can aid in the early detection of sudden deterioration of physiological condition due to detectable changes in respiratory function. The systems and methods disclosed herein provide an effective tool for tidal chest volume study and respiratory function analysis.
摘要:
What is disclosed is system and method for contemporaneously reconstructing images of a scene illuminated with unstructured and structured illumination sources. In one embodiment, the system comprises capturing a first 2D image containing energy reflected from a scene being illuminated by a structured illumination source and a second 2D image containing energy reflected from the scene being illuminated by an unstructured illumination source. A controller effectuates a manipulation of the structured and unstructured illumination sources during capture of the video. A processor is configured to execute machine readable program instructions enabling the controller to manipulate the illumination sources, and for effectuating the contemporaneous reconstruction of a 2D intensity map of the scene using the second 2D image and of a 3D surface map of the scene using the first 2D image. The reconstruction is effectuated by manipulating the illumination sources.
摘要:
A system and method for rendering an image provide for segmenting the image into a plurality of segments based on image content and, for each identified segment, identifying a rendering profile from a set of rendering profiles. The rendering profile may include a look up table for converting pixels from a first color space, such as a device independent color space, e.g., RGB, to second color space, such as a device dependent color space, e.g., CMYK. The identified rendering profile is applied to the respective segment and the segments to which the profiles have been applied are combined into a print job for rendering on print media by an associated color output device or otherwise output. The system allows different segments in the image to be processed through different rendering profiles most suited to the objects that the segments contain.
摘要:
What is disclosed is a novel system and method for simultaneous spectral decomposition suitable for image object identification and categorization for scenes and objects under analysis. The present system captures different spectral planes simultaneously using a Fabry-Perot multi-filter grid each tuned to a specific wavelength. A method for classifying pixels in the captured image is provided. The present system and method finds its uses in a wide array of applications such as, for example, occupancy detection in a transportation management system and in medical imaging and diagnosis for healthcare management. The teachings hereof further find their uses in other applications where there is a need to capture a two dimensional view of a scene and decompose the scene into its spectral bands such that objects in the image can be appropriately identified.