摘要:
A charged-device model (CDM) electrostatic discharge (ESD) protection for complementary metal oxide semiconductor (CMOS) integrated circuits such as input/output (I/O) circuits. A CDM ESD clamp device is disposed on an output buffer or an input stage of the CMOS circuit in order to clamp the CDM ESD overstress voltage across the gate oxide during a CDM ESD event. When applied to I/O circuits, a bi-directional diode string with multiple diodes is used in conjunction with the CDM ESD clamp device. During the CDM ESD event, CDM charges (CDM Q) originally stored in the common substrate are discharged through the desired CDM ESD clamp device so as to protect all functional devices in the input, output or I/O circuits, and effectively improve the CDM ESD level in integrated circuit (IC) products.
摘要:
An apparatus of preventing integrated circuits from interfering by electrostatic-discharge (ESD), applied in an internal circuit and an input pad, both coupled with a first power line and a second power line, comprises a voltage clamp circuit and a voltage bias circuit. The voltage clamp circuit, with a transistor, connects to the second power line for clamping potential level through the voltage clamp circuit. The voltage bias circuit, with at least one diode coupled in series, connects to the voltage clamp circuit and the first power line for biasing the voltage clamp circuit to the second power line.
摘要:
An ESD protected circuit is provided for protecting first and second internal circuits against ESD failure. The first and second internal circuits are respectively connected to either a first or a second power supply bus. The first and second power supply busses are mutually isolated from each other and are of the same polarity. The ESD protected circuit includes a first ESD protection circuit connected to the first power supply bus. A second ESD protection circuit is also provided which is connected to the second power supply bus. A third ESD protection circuit is connected between the first and second power supply busses. The third ESD protection circuit is for selectively connecting the first and second power supply busses only during an ESD event so that ESD energy applied to one of the first or second power supply busses couples to a second one of the first or second power supply busses. ESD energy coupled between the first and second power supply busses is also coupled through at least one of the first or second ESD protection circuits to ground.
摘要:
In this invention a second gate is created in the area of the drain of a host transistor. The second gate overlies an N-well region and separates the drain of the host transistor into two portions. One portion of the drain is between the field oxide and the second gate and contains the contact for the drain. The second portion of the drain lies between the first gate which controls current in the drain and the second gate. The second gate provides a mask for the siliciding of the drain and provides a high impedance to drain current. In the event of an ESD, drain current is forced down into the N-well through one portion of the drain, under the second gate, and back up through the second portion of the drain providing a longer path and additional bulk material into which to dissipate the energy from an ESD event. Without using an extra mask to block the silicide, the second gate provides a silicide blocking effect to the drain of the ESD protection device.
摘要:
A capacitor-triggered electrostatic discharge (ESD) protection circuit is disposed between a metal pad and V.sub.ss potential level, wherein the pad may be an input pad, an output pad, or a V.sub.DD power rail. The circuit includes a thick oxide device, a capacitor, and a resistor. The thick oxide device is configured with its drain and source connected to the pad and circuit ground V.sub.SS, respectively. The gate of the thick oxide device is tied to the pad, and the oxide device bulk is coupled by the resistor to circuit ground V.sub.SS. The capacitor is connected between the pad and the bulk of the thick oxide device. The bulk of the device is constructed by a P-well region formed in a substrate. The capacitor is formed between the pad and a polysilicon layer just therebelow, without consuming extra layout areas. When a positive-to-ground ESD pulse is conducted at the pad, the capacitor will couple the ESD voltage to the well region, forward bias the bulk/source junction, and then turn on the thick oxide device operated in a bipolar mode to bypass the ESD stress. Moreover, a diode is connected between the pad and circuit ground by its cathode and anode, respectively, to bypass a negative-to-ground ESD pulse. The diode can be an extra or built-in PN junction.
摘要:
An electrostatic discharge (ESD) protection circuit which forms part of an integrated circuit having a VDD line and a VSS line, and which includes an ESD transient detection circuit connected between the VDD and VSS lines; and an electrostatic discharge circuit driven by the transient detection circuit and connected between the VDD and VSS lines, wherein the discharge circuit includes a bipolar transistor having an emitter and a collector, one of which is electrically connected to the VDD line and the other of which is electrically connected to the VSS line, wherein the bipolar transistor is implemented by a structure selected from a group consisting of a vertical bipolar transistor and a field oxide device, and wherein the bipolar transistor has a base that is driven by the transient detection circuit.
摘要:
An electrostatic discharge protection network which diverts ESD stress arising between any two contact pads of an IC device, in order to prevent damage to the internal circuitry of the IC device. An ESD discharge bus is arranged around the periphery of an IC chip. Between each IC pad and the discharge bus, there is a protection circuit to directly bypass an ESD stress arising at any two IC pads. Each ESD protection circuit includes a diode, a thick-oxide device, a resistor, and a capacitor. The protection circuit is operated in snapback mode without causing breakdown. Therefore, the triggering voltage of the ESD protection circuit is lowered to the level of the snapback voltage but not to the level of the breakdown voltage.
摘要:
The present invention discloses a semiconductor-based planar micro-tube discharger structure and a method for fabricating the same. The method comprises steps: forming on a substrate two patterned electrodes separated by a gap and at least one separating block arranged in the gap; forming an insulating layer over the patterned electrodes and the separating block and filling the insulating layer into the gap. Thereby are formed at least two discharge paths. The method can fabricate a plurality discharge paths in a semiconductor structure. Therefore, the structure of the present invention has very high reliability and reusability.
摘要:
The present invention discloses a semiconductor-based planar micro-tube discharger structure and a method for fabricating the same. The method comprises steps: forming on a substrate two patterned electrodes separated by a gap and at least one separating block arranged in the gap; forming an insulating layer over the patterned electrodes and the separating block and filling the insulating layer into the gap. Thereby are formed at least two discharge paths. The method can fabricate a plurality discharge paths in a semiconductor structure. Therefore, the structure of the present invention has very high reliability and reusability.
摘要:
An ESD protection circuit with leakage current reduction function includes a silicon controlled rectifier, a first CMOS inverter, a first transistor, a current mirror, a PMOS capacitor and a resistor. The first CMOS inverter electrically connects with the silicon controlled rectifier. The first transistor comprises a first end, a second end and a third end, wherein the first end electrically connects with the silicon controlled rectifier and the first CMOS inverter, and the current mirror electrically connects with the third end of the first transistor. The PMOS capacitor electrically connects with the current mirror, and the resistor electrically connects with the first CMOS inverter, the second end of the first transistor and the PMOS capacitor.