摘要:
A process for producing an emissive device including a first emissive layer composed of a first material that emits light of a first color, a second emissive layer composed of a second material that emits light of a second color different from the first color, and a third emissive layer that emits light of a third color by stacking at least the first material and the second material, the third color being different from both of the first color and the second color, the process includes (1) feeding the first material to a side adjacent to a first face of at least one first electrode by a gas-phase process with a first mask to form films, the first mask having an opening for forming the first emissive layer and having an opening for forming the third emissive layer; (2) feeding the second material to the side adjacent to the first face of each first electrode by a gas-phase process to form the emissive layers while a second mask having an opening for forming the second emissive layer and having an opening for forming the third emissive layer is positioned in such a manner that the position of each film to be the third emissive layer is substantially identical to the position of the opening for forming the third emissive layer; and (3) forming a second electrode at a side of each emissive layer opposite the side adjacent to the first electrode.
摘要:
A film forming device includes a mask member that is made of silicon and has first openings of predetermined patterns; a magnetic member that is made of a magnetic material and has a second opening, and that is aligned with the mask member so that the first openings are arranged in the second opening in plan view of the second opening; and a substrate holding member that generates magnetic force between the magnetic member and itself in order to adhere the mask member and a substrate to each other. The mask member and the substrate are interposed between the magnetic member and the substrate holding member in this order from the magnetic member.
摘要:
To provide a micro-lens substrate wherein a higher contrast ratio can be obtained when used in a liquid crystal panel and the like. A micro-lens substrate 1A includes a first substrate 2 with concaves for microlenses having a plurality of first concaves 31 and first aligment marks 71 formed on a first glass substrate 29, a second substrate 8 with concaves for microlenses having a plurality of second concaves 32 and second aligment marks 72 formed on a second glass substrate 89, a resin layer 9, microlenses 4 consisting of doulbe convex lenses formed of a resin filled in between the first and second concaves 31 and 32, and spacers 5.
摘要:
A mask includes a first portion having an opening, a second portion disposed in the opening and surrounded by the opening, and a beam connecting the first portion to the second portion.
摘要:
A method of manufacturing a mask includes: attaching a second substrate having a plurality of penetrating holes to a first substrate having an opening. The second substrate is attached such that the penetrating holes are positioned within the opening. A groove is formed on a surface of the first substrate facing the second substrate. The groove is utilized to form a flow path between the first and second substrates.
摘要:
A mask is provided including a plurality of through-holes penetrating a silicon substrate with (100) orientation. The walls defining the through-holes include a vertical part and an inclined part. The vertical part extends in a vertical direction relative to a principal plane of the substrate, and the inclined part extends in a predetermined oblique angle from the vertical part.
摘要:
A mask has a monocrystal substrate having opposite surfaces which are planes having Miller indices {110}. A plurality of penetrating holes are formed in the monocrystal substrate. An opening shape of each of the penetrating holes is a polygon and each side of the polygon is parallel with a plane in a group of the {111} planes. The wall surfaces of the penetrating holes are the {111} planes. In the method of manufacturing a mask, openings are formed in the etching resistant film corresponding to the shape of the penetrating holes and the monocrystal substrate is etched.