摘要:
A CPP MR sensor interposes a tapered soft magnetic flux guide (FG) layer between a hard magnetic biasing layer (HB) and the free layer of the sensor stack. The flux guide channels the flux of the hard magnetic biasing layer to effectively bias the free layer, while eliminating instability problems associated with magnetostatic coupling between the hard bias layers and the upper and lower shields surrounding the sensor when the reader-shield-spacing (RSS) is small.
摘要:
A magneto-resistive device having a large output signal as well as a high signal-to-noise ratio is described along with a process for forming it. This improved performance was accomplished by expanding the free layer into a multilayer laminate comprising at least three ferromagnetic layers separated from one another by antiparallel coupling layers. The ferromagnetic layer closest to the transition layer must include CoFeB while the furthermost layer is required to have low Hc as well as a low and negative lambda value. One possibility for the central ferromagnetic layer is NiFe but this is not mandatory.
摘要:
A device that includes a near field transducer (NFT); at least one cladding layer adjacent the NFT; and a discontinuous metal layer positioned between the NFT and the at least one cladding layer.
摘要:
A composite free layer having a FL1/insertion/FL2 configuration where a top surface of FL1 is treated with a weak plasma etch is disclosed for achieving enhanced dR/R while maintaining low RA, and low λ in TMR or GMR sensors. The weak plasma etch removes less than about 0.2 Angstroms of FL1 and is believed to modify surface structure and possibly increase surface energy. FL1 may be CoFe, CoFe/CoFeB, or alloys thereof having a (+) λ value. FL2 may be CoFe, NiFe, or alloys thereof having a (−) λ value. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element. When CoFeBTa is selected as insertion layer, the CoFeB:Ta ratio is from 1:1 to 4:1.
摘要:
The pinning field in an MR device was significantly improved by using the Ru 4A peak together with steps to minimize interfacial roughness of the ruthenium layer as well as boron and manganese diffusion into the ruthenium layer during manufacturing. This made it possible to anneal at temperatures as high as 340° C. whereby a high MR ratio could be simultaneously achieved.
摘要:
A high performance TMR sensor with a spacer including at least one metal layer such as Cu and one or more MgO layers is disclosed. In addition, there may be a metal dopant in the MgO layer. In an alternative embodiment, the MgO layer may be replaced by other low band gap insulating or semiconductor materials. An ultra-low RA of
摘要翻译:公开了具有包括至少一个金属层如Cu和一个或多个MgO层的间隔物的高性能TMR传感器。 此外,MgO层中可能存在金属掺杂剂。 在替代实施例中,MgO层可以由其他低带隙绝缘或半导体材料代替。 通过本发明的复合间隔物实现了<0.4μohm-cm 2的超低RA与14%的MR,低磁致伸缩和低Hin值约20Oe的组合。 Cu层的厚度为0.1〜10埃,MgO / Cu / MgO / Cu,MgO / Cu / MgO等间隔构造的MgO的厚度为5〜20埃。
摘要:
A method of forming a high performance magnetic tunnel junction (MTJ) is disclosed wherein the tunnel barrier includes at least three metal oxide layers. The tunnel barrier stack is partially built by depositing a first metal layer, performing a natural oxidation (NOX) process, depositing a second metal layer, and performing a second NOX process to give a MOX1/MOX2 configuration. An uppermost metal layer on the MOX2 layer is not oxidized until after the MTJ stack is completely formed and an annealing process is performed to drive unreacted oxygen in the MOX1 and MOX2 layers into the uppermost metal layer. In an alternative embodiment, a plurality of metal oxide layers is formed on the MOX1 layer before the uppermost metal layer is deposited. The resulting MTJ stack has an ultralow RA around 1 ohm-μm2 and maintains a high magnetoresistive ratio characteristic of a single metal oxide tunnel barrier layer.
摘要:
The pinning field in an MR device was significantly improved by using the Ru 4A peak together with steps to minimize interfacial roughness of the ruthenium layer as well as boron and manganese diffusion into the ruthenium layer during manufacturing. This made it possible to anneal at temperatures as high as 340° C. whereby a high MR ratio could be simultaneously achieved.
摘要:
The conventional free layer in a TMR read head has been replaced by a composite of two or more magnetic layers, one of which is iron rich The result is an improved device that has a higher MR ratio than prior art devices, while still maintaining free layer softness and acceptable magnetostriction. A process for manufacturing the device is also described.