Abstract:
An advanced gateway for multiple broadband access can include a plurality of broadband network interfaces. The advanced gateway can route data from a local network interface to a broadband network interface when a performance attribute of the broadband network meets or exceeds a data characteristic of data conveyed through the local network interface. In another embodiment, a first advanced gateway can send a portion of data received through the local network interface to a second advanced gateway when performance attributes associated with the first advanced gateway cannot meet or exceed a data characteristic of data received through a local network interface of the first advanced gateway. In yet another embodiment, an advanced gateway can receive commands from service providers, determine a recipient device for the command and forward the command to the recipient device through a device interface coupled to the recipient device.
Abstract:
Method, systems, and apparatuses are described for wireless communications. More particularly, a wireless station may connect to a wireless network using a first radio frequency (RF) band and detect a signal strength of the first RF band is greater than a roaming threshold. The wireless station may perform a plurality of scans for support by the wireless network of a second RF band in response to the detected signal strength. Each scan may occur when the signal strength of the first RF band is greater than the roaming threshold. The wireless station may selectively connect to the wireless network using the second RF band based at least in part on the scanning and a throughput supported by the wireless network over the second RF band. The first RF band may be a 2.4 GHz band and the second RF band may be a 5 GHz band.
Abstract:
A slotted message access protocol can be implemented for transmitting short packets. Each beacon period may be divided into multiple time slots. At least one time slot may be assigned to a network device per beacon period based, at least in part, on latency specifications of packets that the network device is configured to transmit. In one example, some of the unassigned time slots may be designated as contention-based time slots. Network devices may contend with each other to gain control of and transmit packets during a contention-based time slot based on the priority level of the packets to be transmitted. Network devices may also use an encryption key and an initialization vector for securely exchanging short packets. Furthermore, a repeater network device may be designated to retransmit a packet, received from an original transmitting network device, during a communication time slot assigned to the original transmitting network device.
Abstract:
Network devices can be configured to implement adaptive power control functionality in a communication network. A power control requestor of a local communication network can calculate a link margin between a neighbor network device of a neighbor communication network and a local network device associated with a least preferred performance measurement. The power control requestor can transmit a power control message including the link margin to request the neighbor network device to vary the transmit power of the neighbor network device. In response to receiving a power control message, a power control responder can use a link margin indicated in the power control message to evaluate the feasibility of reducing the transmit power of the power control responder. The power control responder can transmit a power control response indicating whether it will vary the transmit power.
Abstract:
A method includes determining, at a first transmitter, whether to permit reuse of a first transmit opportunity (TXOP) associated with a message. The method further includes sending a portion of the message from the first transmitter to a first receiver. The portion of the message indicates whether reuse, by a reuse transmitter, of the first TXOP is permitted. When reuse of the first TXOP is permitted, the reuse transmitter is permitted to send a second message while the first transmitter sends a second portion of the message to the first receiver during the first TXOP.
Abstract:
A powerline communication adapter may couple powerline communication signals between a network device and a powerline communication network. The powerline communication adapter may comprise of a first electrical connector including an electrical socket and a second electrical connector including an electrical plug. The powerline communication adapter may include a coupling unit coupled between the first electrical connector and the second electrical connector. The coupling unit may be configured to couple a powerline communication signal received via the first electrical connector to the second electrical connector to transmit the powerline communication signal via at least two powerline communication channels in the powerline communication network.
Abstract:
A receiving station receives an orthogonal frequency division multiplexing (OFDM) symbol via a shared medium, the OFDM symbol comprising a first set of frequency components modulated with preamble information and a second set of frequency components modulated with information. The receiving station processes sampled values of the received OFDM symbol based on channel characteristics estimated from the first set of frequency components to decode information encoded on a first subset of the second set of frequency components. The receiving station processes sampled values from the first symbol based on channel characteristics estimated from the first set of frequency components and the first subset of the second set of frequency components to decode information encoded on a second subset of the second set of frequency components.
Abstract:
Systems and methods for allocating network bandwidth between a plurality of networks. Requests for bandwidth allocation from other networks can be received. A coexistence frame requesting an allocation of bandwidth for a local network can be generated based upon the bandwidth allocation requests received from other networks. The coexistence frame can be transmitted, and utilization of the requested allocation can be delayed by a reservation period.
Abstract:
A method includes determining a signal strength value for a first received signal received from a first station in a first network. The first received signal is received in the first network through a shared communication medium that is shared with a second network. The method includes receiving an indicator of a signal strength value determined for a second received signal from a second station in the second network. Based on the signal strength value for the first received signal and based on the indicator of the signal strength value determined for the second received signal, a detection threshold is selected such that, in response to a third received signal having a signal strength in excess of the detection threshold, the third received signal is processed according to a protocol of the first network and is not processed according to a protocol of the second network.
Abstract:
Communicating among stations in a network includes, from each of multiple stations in the network, transmitting information indicating which other stations from which that station is able to reliably receive transmissions. A schedule for communicating among the stations is determined based on the information from the stations and transmitting the schedule over the network. The schedule includes a plurality of time slots during which respective contention groups of stations are assigned to communicate using a contention-based protocol.