Abstract:
An aspect of the present disclosure includes methods, systems, and computer-readable media for receiving a beam failure detection reference signal configuration, detecting an absence of a configured and quasi-co-located beam failure detection reference signal in a monitored control resource set (CORESET), and utilizing reference signals indicated in the CORESET transmission configuration indicator state for beam failure detection.
Abstract:
Wireless communications systems and methods related to full-duplex cooperative communication by a first device tethered with a second device communicating with a third device. With the tether, one device between the first device and the second device is designated or selected as a transmitter, and the other device as a receiver. In full-duplex operation, the transmitter may transmit outgoing data concurrent to the receiver receiving incoming data. In an example, one of the first and second devices may have a modem that is used to control the full-duplex communication. The modem controls both transmission and reception. In another example, both devices may have a modem. Each modem may assume responsibility for part of the full-duplex communication by performing some processing before either shipping received data, or transmitting outgoing data. The amount of processing may be split at a link layer. Interference cancellation may mitigate interference from full-duplex operation.
Abstract:
Methods, systems, and devices for wireless communications are described. Some methods include receiving an indication of a traffic flow to be served by a wireless communication system, determining scheduling information for the traffic flow based on the indication, wherein the scheduling information comprises one or more of a time offset, a reliability, and a minimum throughput of delivery of data traffic for the flow, and transmitting the scheduling information in response to the indication. Some methods include determining delta time offset information relative to one or more existing time offsets of packet arrivals of one or more traffic flows for scheduling transmissions of a first traffic flow in the wireless communication system, and transmitting the delta time offset information to a node of the first traffic flow for scheduling transmissions of the first traffic flow in the wireless communication system. Other aspects and features are also claimed and described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station (BS) may transmit and a user equipment (UE) may receive cloned bandwidth part configuration information. In some aspects, the UE may determine a linkage between a primary bandwidth part and the cloned bandwidth part. In some aspects, the BS may transmit and the UE may receive a downlink control information message identifying the primary bandwidth part to signal a bandwidth part switch for the primary bandwidth part and a first bandwidth part or identifying the cloned bandwidth part to signal the bandwidth part switch for the primary bandwidth part and a second bandwidth part. In some aspects, the UE may perform the bandwidth part switch based at least in part on the downlink control information message. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. Some methods include receiving an indication of a traffic flow to be served by a wireless communication system, determining scheduling information for the traffic flow based on the indication, wherein the scheduling information comprises one or more of a time offset, a reliability, and a minimum throughput of delivery of data traffic for the flow, and transmitting the scheduling information in response to the indication. Some methods include determining delta time offset information relative to one or more existing time offsets of packet arrivals of one or more traffic flows for scheduling transmissions of a first traffic flow in the wireless communication system, and transmitting the delta time offset information to a node of the first traffic flow for scheduling transmissions of the first traffic flow in the wireless communication system. Other aspects and features are also claimed and described.
Abstract:
A method, apparatus are described for a cloud based radio access network (RAN). The method may include transmitting a first message from a base station to a user equipment (UE), determining that a second message from the UE is not received by a media access control (MAC) scheduler within a pre-determined time, delaying re-transmission of the first message or transmission of a third message from the base station to the UE, and scheduling other hybrid automatic repeat request (HARQ) processes of the UE in intervening sub-frames. The method may include receiving a first message from a UE at a base station, determining that a second message from the base station cannot be constructed within a pre-determined time from delays in receiving assignments from a Cloud, constructing and transmitting the second message to UEs based on assignments received earlier from the Cloud, and suspending an HARQ process associated with other UEs.
Abstract:
A method, apparatus are described for a cloud based radio access network (RAN). The method may include transmitting a first message from a base station to a user equipment (UE), determining that a second message from the UE is not received by a media access control (MAC) scheduler within a pre-determined time, delaying re-transmission of the first message or transmission of a third message from the base station to the UE, and scheduling other hybrid automatic repeat request (HARQ) processes of the UE in intervening sub-frames. The method may include receiving a first message from a UE at a base station, determining that a second message from the base station cannot be constructed within a pre-determined time from delays in receiving assignments from a Cloud, constructing and transmitting the second message to UEs based on assignments received earlier from the Cloud, and suspending an HARQ process associated with other UEs.
Abstract:
A pulse-per-n-seconds signal may be generated at a wireless communication station to synchronize the internal hardware of the wireless communication station.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment concurrently communicates with a source base station (BS) and a target BS on a connection with the source BS and a connection with the target BS as part of a make-before-break (MBB) handover procedure; and performs a common packet data convergence protocol (PDCP) function for the connection with the source BS and the connection with the target BS before the connection with the source BS is released as part of the MBB handover procedure. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a network node, an indication of one or more data radio bearers between the UE and the network node that are configured for application data unit (ADU) traffic. The UE may communicate, with an application server, one or more ADU traffic flows through the network node using the one or more data radio bearers. Numerous other aspects are provided.