摘要:
One exemplary embodiment can be a process for oligomerizing one or more hydrocarbons. The process can include oligomerizing a feed including one or more C3-C5 hydrocarbons to produce an effluent, and recycling at least a portion of the effluent for oligomerizing. Typically, the recycled portion has at least about 50%, by weight, one or more alkenes based on the weight of the recycled portion.
摘要:
One exemplary embodiment can be a fluid catalytic cracking unit. The fluid catalytic cracking unit can include a first riser, a second riser, and a disengagement zone. The first riser can be adapted to receive a first feed terminating at a first reaction vessel having a first volume. The second riser may be adapted to receive a second feed terminating at a second reaction vessel having a second volume. Generally, the first volume is greater than the second volume. What is more, the disengagement zone can be for receiving a first mixture including at least one catalyst and one or more products from the first reaction vessel, and a second mixture including at least one catalyst and one or more products from the second reaction vessel. Typically, the first mixture is isolated from the second mixture.
摘要:
One exemplary embodiment can be a fluid catalytic cracking system. The system can include a reaction zone operating at conditions to facilitate olefin production and including at least one riser. The at least one riser can receive a first feed having a boiling point of about 180-about 800° C., and a second feed having more than about 70%, by weight, of one or more C4+ olefins.
摘要:
One exemplary embodiment can be a process for cooling a vent stream from a receiver. Generally, the process may include providing a refrigerant including at least one compound contained in the receiver so the refrigerant leaking into the receiver can be compatible with the process.
摘要:
One exemplary embodiment can be an alkylation system including a catalyst regeneration zone. Generally, the catalyst regeneration zone includes first and second columns. The first column can provide an overhead stream having a catalyst and a first hydrocarbon, a side-stream having the catalyst and water, and a bottom stream having a second hydrocarbon. Typically, the second column receives the side-stream as a feed.
摘要:
Disclosed is an apparatus and process for disengaging regenerated catalyst from flue gas in a catalyst regenerator so as to avoid re-entrainment of catalyst that has settled into a bed in the catalyst regenerator using a disengaging device. A disengaging arm of the disengaging device has an outer shell that encloses the arm, an inner shell with a slot for allowing catalyst and flue gas to exit the arm and an outer baffle having a lower edge located below the opening in the outer wall. The baffle directs the catalyst and flue gas downwardly and limits radial flow. Catalyst and flue gas enter the disengaging arm through an opening in an outer wall of a riser section at a first superficial velocity and exits through a slot in a bottom of the disengaging arm at no more than 1.33 the first superficial velocity.
摘要:
One exemplary embodiment can be a fluid catalytic cracking system. Generally, the fluid catalytic cracking system includes a first reaction vessel and a second reaction vessel. The first reaction vessel may contain a first catalyst having pores with openings greater than about 0.7 nm and a second catalyst having pores with smaller openings than the first catalyst. What is more, the second reaction vessel may contain the second catalyst. Generally, at least a portion of the second catalyst is directly communicated with the first reaction vessel.
摘要:
One exemplary embodiment can be a fluid catalytic cracking system. The system can include a reaction zone operating at conditions to facilitate olefin production and including at least one riser. The at least one riser can receive a first feed having a boiling point of about 180-about 800° C., and a second feed having more than about 70%, by weight, of one or more C4+ olefins.
摘要:
One exemplary embodiment can be a fluid catalytic cracking system. The system can include a reaction zone, in turn including a reactor receiving, a fluidizing stream, a fuel gas stream, a fluidizable catalyst, a stream having an effective amount of oxygen for combusting the fuel gas stream, and a feed.