Abstract:
A system comprising a riser reactor comprising a gas oil feedstock and a first catalyst under catalytic cracking conditions to yield a riser reactor product comprising a cracked gas oil product and a first used catalyst; a intermediate reactor comprising at least a portion of the cracked gas oil product and a second catalyst under high severity conditions to yield a cracked intermediate reactor product and a second used catalyst; wherein the intermediate reactor feedstock comprises at least one of a fatty acid and a fatty acid ester.
Abstract:
A process for producing biodiesel from natural oils and/or fats, a low molecular weight C1-C6 alcohol and catalyst is described. The process preferably uses vegetable oils and is specifically configured for producing biodiesel from castor oil.
Abstract:
Systems and methods for upgrading hydrocarbons are provided. A first hydrocarbon can be cracked in the presence of one or more catalysts to provide a first cracked mixture containing one or more light cycle oils (LCOs) and one or more coked catalysts. A second hydrocarbon, containing one or more C4 to C20 hydrocarbons and having a Research Octane Number of less than 88, can be mixed with the one or more catalysts to provide a first mixture at a second temperature. A third hydrocarbon can be combined with the first mixture to provide a second mixture. The second mixture can be cracked to provide a second cracked mixture containing propylene, one or more mixed hydrocarbons in the gasoline boiling range having a Research Octane Number greater than 88, and one or more coked catalysts. The first cracked mixture and second cracked mixture can be combined to provide a third mixture.
Abstract:
This invention relates to a process to produce propylene from a hydrocarbon feed stream, preferably a naphtha feed stream, comprising C5 and C6 components wherein a light portion having a boiling point range of 120° C. or less is introduced into a reactor separately from the other components of the feed stream.
Abstract:
The conventional wye (where the clean regenerated catalyst returns from the regenerator to contact the feed as it enters the riser) is replaced with two or more wyes, all connected between the regenerator outlet and the inlet to a common short cracking riser. Each wye has a separate injector which can inject; e.g., diesel oil, so that neat (unmixed) diesel contacts clean catalyst and the mixture rises up a smaller riser before entering a short main riser where the largely cracked mixture is admixed with similar cat-vacuum bottoms, etc. mixtures from the other wyes. Most cracking occurs before entering the common riser so the effect is similar to a riser cracker operating on a single unmixed feed.
Abstract:
A catalytic cracking process is disclosed which comprises:(a) thermally and/or catalytically cracking a hydrogen-rich hydrocarbon feed in the lower region of a riser reactor in the presence of a catalyst composition comprising a first catalyst component, and, optionally, a second catalyst component, said first catalyst component being an amorphous cracking catalyst and/or large pore crystalline cracking catalyst, said second catalyst component being a shape selective medium pore crystalline silicate zeolite catalyst, to provide a gasiform material contributing hydrogen species and/or carbon-hydrogen fragments; and,(b) catalytically cracking a thermally treated heavy hydrocarbon feed in a higher region of the riser in the presence of said catalyst composition and gasiform material to provide gasoline boiling range material in increased yield and/or of higher quality.