Abstract:
Time, frequency and spatial processing parameters for communications between a base station and a mobile station are selected by transmitting synchronization signals in multiple slices of a wireless transmission sector for the base station, and receiving feedback from the mobile station of at least one preferred slice of the multiple slices. In response to selection of one of the slices as an active slice for communications between the base station and the mobile station, reference signals are transmitted in the selected active slice using a corresponding selected precoder and/or codebook. The mobile station estimates and feeds back channel state information (CSI) based on those reference signals, and the CSI is then employed to determine communication parameters for communications between the base station and mobile station that are specific to the mobile station.
Abstract:
A mobile station performs a method for random access in a wireless network. The method includes receiving, from a base station, information regarding a configuration of at least one receive beam of the base station to receive a random access signal. The method also includes configuring at least one transmit beam for a transmission of the random access signal based on the configuration information from the base station. The method further includes transmitting the random access signal to the base station on the at least one transmit beam.
Abstract:
A base station is capable of communicating with a plurality of subscriber stations using a beamforming scheme that varies beams over different time instances. The base station includes a plurality of antenna arrays configured to transmit N spatial beams and carry a reference symbols corresponding to specific spatial beams. The base station also includes NRF number of radio frequency (RF) processing chains coupled to respective ones of the plurality of antenna arrays, wherein N>>NRF. The subscriber station includes MRF processing receive paths configured to receive M number of beams from the base station.
Abstract:
A communication network includes a base station configured to wirelessly communicate first communication traffic with a first network entity using a first beam, and communicate second communication traffic with a second network entity using a second beam. Each of the first and second communication traffic includes at least one of backhaul traffic, wireless access traffic, and traffic for coordination in-between network entities.
Abstract:
A method for transmitting control information by transmitting a reference signal from a first transceiver to a second transceiver, in response to the reception of the reference signal, determining at the second transceiver a plurality of control channel elements based upon the received reference signal, jointly encoding the plurality of control channel elements at the second transceiver to generate a control signal, and transmitting the control signal from the second transceiver to the first transceiver.
Abstract:
Beam-steered millimeter wave signals transmitted in each of n sector slices include a sequence of primary synchronization (PSCH) symbols within predetermined symbol positions in at least one slot of a subframe. The symbols in consecutive symbol positions are each transmitted on a different one of the n slices, with the first symbol repeated on the same slice at the end. The sequence order rotates cyclically in each subframe so that two PSCH symbols are transmitted on one slice in a single subframe every nth subframe. Secondary synchronization (SSCH) and Broadcast Channel (BCH) symbols are transmitted in a predetermined pattern following the sequence of PSCH symbols. By transmitting consecutive PSCH symbols on different slices and repeating the first symbol, the mobile station can detect the best slice and beam by switching receive beams every subframe instead of every slot, relaxing time constraints on AGC adjustment while avoiding the start-at-the-edge problem.
Abstract:
A method for performing random access by a User Equipment (UE) in a wireless network, comprises configuring at least one UE transmit beam for a transmission of a random access signal, generating the at least one UE transmit beam using an antenna array according to the configuration, and transmitting the random access signal to a base station (BS) on the at least one UE transmit beam. An user equipment for performing random access in a wireless network, the User Equipment comprises a processing circuit configured to configure at least one UE transmit beam for a transmission of a random access signal, and generate the at least one UE transmit beam using an antenna array according to the configuration, and transmit the random access signal to the Base Station (BS) on the at least one UE transmit beam.
Abstract:
Methods and apparatus for sending and receiving mobile station (MS) specific channel state indication reference symbols (CSI-RS) is provided. A common CSI-RS is sent from a base station (BS) and is received by an MS. First feedback is sent to the BS from the MS based on the common CSI-RS. A configuration of an MS-specific CSI-RS is sent from the BS and received by the MS. An MS specific CSI-RS is sent from the BS and is received by the MS. Second feedback is sent to the BS from the MS based on the MS specific CSI-RS.
Abstract:
A system includes a base station configured to communicate with a plurality of mobile stations. The base station transmits downlink timing synchronization and establishes frequency synchronization with at least one of the plurality of mobile stations. The base station receives, from the mobile station, at least one of: coarse sounding reference signal (SRS), and fine SRS. The base processes at least one of the coarse SRS to enable tracking of the preferred uplink (UL) slice for uplink transmissions, and the fine SRS in order to resolve a short-term small-scale channel state information (CSI), estimate a CSI from at least one of the coarse SRS and fine SRS, and perform uplink scheduling and grant. The mobile station performs uplink scheduling request and uplink data communication.
Abstract:
Resource elements from multiple code blocks are separated into different groups, and decoding the code bits of the resource elements within each group without waiting for a completed reception of a transport block to start decoding. Coded bits from multiple code blocks are separated into different groups, and the code blocks containing coded bits within each group are decoded. A first CRC is attached to the transport block and a second CRC is attached to at least one code block from the transport block. An improved channel interleaver design includes mapping from coded bits of different code blocks to modulation symbols, and mapping from modulation symbols to time, frequency, and spatial resources, to make sure each code block to get roughly the same level of protection.