摘要:
Reciprocity detection and utilization techniques for beamforming training are described. In one embodiment, for example, an apparatus may comprise a station (STA) comprising logic, at least a portion of which is in hardware, the logic to perform an initiator transmit sector sweep (TXSS) to select an initiator transmit (TX) sector, perform a beamforming reciprocity test using the selected initiator TX sector, and determine whether to perform directional reception using a reciprocal initiator receive (RX) sector for the initiator TX sector based on an outcome of the beamforming reciprocity test. Other embodiments are described and claimed.
摘要:
A system and method are provided to facilitate establishing WiGig communications links between WiGig-enabled wireless devices and WiGig PBSS Control Points and Access Points (PCP/AP). The PCP/AP transmits beacons that are intended to assist the wireless devices in locating the PCP/AP. Based on the directional nature of WiGig communications, the beacons are transmitted directionally in a number of sectors in multiple directions simultaneously or in sequence. When devices, such as wireless devices, attempting to connect via a PCP/AP, are positioned very close to the PCP/AP, the devices may be incapable of receiving the transmitted beacons because the low noise amplifier (LNA) located in the individual wireless device receiver may become saturated. The disclosed systems and methods broadcast the beacons at lower power according to different schemes at certain intervals to avoid saturating the LNAs.
摘要:
An embodiment of the present invention provides an apparatus, comprising a transmitter operable to communicate in a wireless network and adapted to use an efficient Golay correlator running at 1.5 times a sampling rate.
摘要:
Some demonstrative embodiments include devices, systems and/or methods of processing single-carrier wireless communication signal. For example, a device may include a receiver to receive an analog single-carrier wireless communication signal representing a first plurality of time-domain samples at a first sampling rate; to convert the analog single-carrier wireless communication signal into a digital signal including a second plurality of time-domain samples at a second sampling rate, which is greater than the first sampling rate; to convert the second plurality of time-domain samples into a first plurality of frequency-domain samples; and to map the first plurality of frequency-domain samples into a second plurality of frequency-domain samples at the first sampling rate.
摘要:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless beamformed communication. For example, an apparatus may include a controller to receive image information representing a plurality of images captured by a mobile device during communication of the mobile device over a wireless beamformed link, and to update a beamforming scheme of the wireless beamformed link based on the image information.
摘要:
Some demonstrative embodiments include devices, systems and/or methods of wireless communication over non-contiguous channels. For example, a device may include a wireless communication unit capable of transmitting symbols of a wireless communication packet to a wireless communication device over a plurality of non-contiguous wireless communication channels.
摘要:
Bidirectional iterative beam forming techniques are described. An apparatus may include a wireless device having an antenna control module operative to initiate beam formation operations using an iterative training scheme to form a pair of communications channels for a wireless network, the antenna control module to communicate training signals and feedback information with a peer device via the transceiver and phased antenna array using partially or fully formed high rate channels, and iteratively determine antenna-array weight vectors for a directional transmit beam pattern for the phased antenna array using feedback information from the peer device. Other embodiments are described and claimed.
摘要:
Some demonstrative embodiments include devices, systems and/or methods of wireless communication. For example, a device may include a wireless communication unit to operate as a first station type selected from the group consisting of a network controller station and a non-network controller station, to associate with a wireless communication device operating as a second station type, different from the first station type, selected from the group consisting of the network controller station and the non-network controller station, and upon performing the association, to switch to operate as the second station type for communicating with the wireless communication device as the first station type.
摘要:
Some demonstrative embodiments include devices, systems and/or methods of wireless communication over non-contiguous channels. For example, a device may include a wireless communication unit capable of transmitting symbols of a wireless communication packet to a wireless communication device over a plurality of non-contiguous wireless communication channels, wherein the wireless communication unit is to transmit, as part of a preamble of the packet, signaling information defining transmission characteristics over the plurality of non-contiguous channels.
摘要:
Briefly, in accordance with one or more embodiments, parallel DFE processing may be utilized for single carrier systems that employ cyclic prefixes. The achieved parallelism allows working at contemporary clock rates that are significantly lower than the required sampling rate at high bandwidth systems such as 60 GHz transmissions.