Abstract:
Disclosed is a method for providing first and second interleaved bit streams to a modulator in order to transmit the first and second interleaved bit streams through at least two antennas in a mobile communication system. An encoder encodes a transmission data stream into a first bit stream with first priority and a second bit stream with second priority being lower than the first priority. An interleaver interleaves the first and second bit streams into the first and second interleaved bit streams. The modulator modulates the first and second interleaved bit streams. The method comprises distributing the first interleaved bit stream into first assignment bit streams for the respective antennas and the second interleaved bit stream into second assignment bit streams for the respective antennas according to power condition information of the respective antennas; and generating combination bit streams by combining the first assignment bit streams and the second assignment bit streams, distributed according to the respective antennas, and providing the generated combination bit streams to the modulator.
Abstract:
Disclosed a transmission apparatus in a CDMA mobile communication system. Transmission frames each have a plurality of time slots, and each of the time slots includes two data parts having the same length, a midamble intervening between the data parts, and a guard period for dividing the consecutive time slots. The transmission apparatus modulates the frames into a radio signal with a modulation signal and transmits the modulated radio signal using a plurality of antennas. A power amplifier amplifies the radio signal. A controller generates a switching control signal in a guard period of time slots of a frame associated with the radio signal amplified by the power amplifier. A switch switches the amplified radio signal from the power amplifier between a first and a second antenna in response to the switching control signal.
Abstract:
An apparatus and method for generating control signals to regulate gain levels of color signals based on color data of which color gains are not regulated and color data of which color gains are regulated. The apparatus and method include generating first control signals to regulate the gain levels of the plurality of color signals based on a plurality of color signals of which gain levels are not regulated, calculating correction values to correct the first control signals based on a plurality of color signals of which gain levels are regulated, and generating second control signals which are results of correcting the first control signals by the correction values.
Abstract:
A method of fabricating an optical fiber preform using an overcladding device and an optical-fiber-drawing method are provided. The overcladding device includes first and second chucks, an annular oxygen-hydrogen burner, a furnace, and a carriage for reciprocating between the first and second chucks positioned on a shelf, and a vacuum pump coupled to one of the chucks. According to the preform-fabricating method, primary and secondary preforms fixed to the first and second chucks are leveled respectively. The primary preform is inserted coaxially into the secondary preform. The secondary preform is pre-heated using the furnace and heated using the oxygen-hydrogen burner, thus softening the preforms. A first end of the secondary preform is sealed by heating the first end using the furnace, and the primary and secondary preforms are collapsed by forming a negative-pressure vacuum state inside the secondary preform through a second end of the secondary preform.
Abstract:
Methods of fabricating a semiconductor integrated circuit having thin film transistors using an SEG technique are provided. The methods include forming an inter-layer insulating layer on a single-crystalline semiconductor substrate. A single-crystalline semiconductor plug extends through the inter-layer insulating layer, and a single-crystalline epitaxial semiconductor pattern is in contact with the single-crystalline semiconductor plug on the inter-layer insulating layer. The single-crystalline epitaxial semiconductor pattern is at least partially planarized to form a semiconductor body layer on the inter-layer insulating layer, and the semiconductor body layer is patterned to form a semiconductor body. As a result, the semiconductor body includes at least a portion of the single-crystalline epitaxial semiconductor pattern. Thus, the semiconductor body has an excellent single-crystalline structure. Semiconductor integrated circuits fabricated using the methods are also provided.
Abstract:
Disclosure is a low loss optical fiber comprising: a core including an inner core portion, which includes pure silica and is positioned at a center of the low loss optical fiber, and an outer core portion which surrounds the inner core portion and includes silica doped with a refractive index controlling material and a clad for surrounding the core.
Abstract:
Provided is a clock generator that includes a comparator in which characteristics of two input signals vary over time. A voltage controller, having a resistor and at least one constant current source, generates a direct current (DC) voltage proportional to an output current of the constant current source and a resistance value of the resistor. The comparator compares a ramp voltage generated by the voltage controller with the DC voltage.
Abstract:
The effective performance metric and achieving method of a multi-user multiple-input multiple-output (MU-MIMO) communication system are provided. A number of feedback bits of channel information may be determined based on an effective spectral efficiency (ESE). The ESE may correspond to a metric of the throughput performance with respect to a total radio resource including an uplink radio resource and a downlink radio resource. User-scheduling may be based on the feedback information that is based on the ESE, and thus, the throughput performance of the communication system may be enhanced.
Abstract:
Presented herein are methods, systems, devices, and computer-readable media for systems for dynamic management of data streams updating displays. Some of the embodiments herein generally relate to presenting video image data on an array of tiled display units, thereby allowing the display of much larger images than can be shown on a single display. Each display unit can include a video image display, a communication mechanism, such as a network interface card or wireless interface card, and a video image controller, such as a graphics card. Attached to the tiled display may be one or more user computers or other sources of video image data. A workstation may also be coupled to the tiled display and to the user computers. Each of the user computers can display data or images on the tiled display simultaneously. Since the tiled display is made up of multiple display units, the images from a single user computer may be on multiple, separate individual display units. The images from multiple user computers could also be shown on the same display unit and they may even overlap.
Abstract:
A touch screen display device includes a common electrode, a base substrate disposed opposite to the common electrode, a display signal line formed on the base substrate, a plurality of pixel electrodes, a touch position sensing part formed between the base substrate and the pixel electrodes, the touch position sensing part sensing a change of electrostatic capacitance formed between the common electrode and the touch position sensing part, and a display layer disposed between the common electrode and the pixel electrodes. The display layer includes a plurality of micro capsules comprising positively charged pigment particles and negatively charged pigment particles.