Methods of making transistor devices with elevated source/drain regions to accommodate consumption during metal silicide formation process
    62.
    发明授权
    Methods of making transistor devices with elevated source/drain regions to accommodate consumption during metal silicide formation process 有权
    制造具有升高的源极/漏极区域的晶体管器件以适应金属硅化物形成过程中的消耗的方法

    公开(公告)号:US09490344B2

    公开(公告)日:2016-11-08

    申请号:US13345922

    申请日:2012-01-09

    摘要: Disclosed herein are various semiconductor devices with dual metal silicide regions and to various methods of making such devices. One illustrative method disclosed herein includes the steps of forming an upper portion of a source/drain region that is positioned above a surface of a semiconducting substrate, wherein the upper portion of the source/drain region has an upper surface that is positioned above the surface of the substrate by a distance that is at least equal to a target thickness of a metal silicide region to be formed in the upper portion of the source/drain region and forming the metal silicide region in the upper portion of the source/drain region.

    摘要翻译: 本文公开了具有双金属硅化物区域的各种半导体器件以及制造这种器件的各种方法。 本文公开的一种说明性方法包括以下步骤:形成位于半导体衬底的表面上方的源极/漏极区的上部,其中源极/漏极区的上部具有位于表面上方的上表面 以至少等于待形成在源/漏区上部的金属硅化物区域的目标厚度的距离,并在源/漏区的上部形成金属硅化物区域。

    Semiconductor device with strain-inducing regions and method thereof
    65.
    发明授权
    Semiconductor device with strain-inducing regions and method thereof 有权
    具有应变诱导区域的半导体器件及其方法

    公开(公告)号:US08524563B2

    公开(公告)日:2013-09-03

    申请号:US13345457

    申请日:2012-01-06

    IPC分类号: H01L21/336

    摘要: Improved MOSFET devices are obtained by incorporating strain inducing source-drain regions whose closest facing “nose” portions underlying the gate are located at different depths from the device surface. In a preferred embodiment, the spaced-apart source-drain regions may laterally overlap. This close proximity increases the favorable impact of the strain inducing source-drain regions on the carrier mobility in an induced channel region between the source and drain. The source-drain regions are formed by epitaxially refilling asymmetric cavities etched from both sides of the gate. Cavity asymmetry is obtained by forming an initial cavity proximate only one sidewall of the gate and then etching the final spaced-apart source-drain cavities proximate both sidewalls of the gate along predetermined crystallographic directions. The finished cavities having different depths and nose regions at different heights extending toward each other under the gate, are epitaxially refilled with the strain inducing semiconductor material for the source-drain regions.

    摘要翻译: 通过引入应变诱导源极 - 漏极区域获得改进的MOSFET器件,其中栅极下方的最接近的“鼻”部分位于与器件表面不同的深度处。 在优选实施例中,间隔开的源极 - 漏极区域可以横向重叠。 这种接近度增加了应变诱导源 - 漏区对源极和漏极之间的感应沟道区域中的载流子迁移率的有利影响。 源极 - 漏极区域通过外部重新填充从栅极的两侧蚀刻的不对称空洞形成。 通过在栅极的仅一个侧壁附近形成初始腔,然后沿着预定的晶体方向蚀刻靠近栅极的两个侧壁的最后的间隔开的源极 - 漏极空腔来获得腔不对称性。 具有不同高度的不同深度和鼻部区域的完成的腔体在栅极下彼此延伸,被外源重新填充用于源极 - 漏极区域的应变诱导半导体材料。

    Strain Engineering in Three-Dimensional Transistors Based on a Strained Channel Semiconductor Material
    69.
    发明申请
    Strain Engineering in Three-Dimensional Transistors Based on a Strained Channel Semiconductor Material 审中-公开
    基于应变通道半导体材料的三维晶体管中的应变工程

    公开(公告)号:US20120025312A1

    公开(公告)日:2012-02-02

    申请号:US13164928

    申请日:2011-06-21

    IPC分类号: H01L27/12 H01L21/336

    摘要: In three-dimensional transistor configurations, such as finFETs, at least one surface of the semiconductor fin may be provided with a strained semiconductor material, which may thus have a pronounced uniaxial strain component along the current flow direction. The strained semiconductor material may be provided at any appropriate manufacturing stage, for instance, prior to actually patterning the semiconductor fins and/or after the patterning the semiconductor fins, thereby providing superior performance and flexibility in adjusting the overall characteristics of three-dimensional transistors.

    摘要翻译: 在诸如finFET的三维晶体管配置中,半导体鳍片的至少一个表面可以设置有应变半导体材料,其可以沿着当前流动方向具有明显的单轴应变分量。 应变半导体材料可以在任何适当的制造阶段提供,例如,在实际构图半导体鳍片之前和/或在图案化半导体鳍片之后,从而在调整三维晶体管的整体特性方面提供优异的性能和灵活性。