摘要:
In sophisticated transistors, a specifically designed semiconductor material, such as a strain-inducing semiconductor material, may be sequentially provided in the drain region and the source region, thereby enabling a significant degree of lateral extension of the grown semiconductor materials without jeopardizing mechanical integrity of the transistor during the processing thereof. For example, semiconductor devices having different drain and source sides may be provided on the basis of sequentially provided embedded semiconductor materials.
摘要:
In sophisticated transistors, a specifically designed semiconductor material, such as a strain-inducing semiconductor material, may be sequentially provided in the drain region and the source region, thereby enabling a significant degree of lateral extension of the grown semiconductor materials without jeopardizing mechanical integrity of the transistor during the processing thereof. For example, semiconductor devices having different drain and source sides may be provided on the basis of sequentially provided embedded semiconductor materials.
摘要:
In transistors requiring a high compressive strain, the germanium contents may be increased by applying a germanium condensation technique. In some illustrative embodiments, an oxidation process is performed in the presence of a silicon/germanium material obtained on the basis of selective epitaxial growth techniques, thereby increasingly oxidizing the silicon species, while driving the germanium into the lower lying areas of the active region, which finally results in an increased germanium concentration.
摘要:
When forming sophisticated high-k metal gate electrode structures on the basis of a threshold voltage adjusting semiconductor alloy, a highly efficient in situ process technique may be applied in order to form a recess in dedicated active regions and refilling the recess with a semiconductor alloy. In order to reduce or avoid etch-related irregularities during the recessing of the active regions, the degree of aluminum contamination during the previous processing, in particular during the formation of the trench isolation regions, may be controlled.
摘要:
In sophisticated semiconductor devices, high-k metal gate electrode structures may be provided in an early manufacturing stage wherein the threshold voltage adjustment for P-channel transistors may be accomplished on the basis of a threshold voltage adjusting semiconductor alloy, such as a silicon/germanium alloy, for long channel devices, while short channel devices may be masked during the selective epitaxial growth of the silicon/germanium alloy. In some illustrative embodiments, the threshold voltage adjustment may be accomplished without any halo implantation processes for the P-channel transistors, while the threshold voltage may be tuned by halo implantations for the N-channel transistors.
摘要:
When forming sophisticated semiconductor devices including transistors with sophisticated high-k metal gate electrode structures and a strain-inducing semiconductor alloy, transistor uniformity and performance may be enhanced by providing superior growth conditions during the selective epitaxial growth process. To this end, a semiconductor material may be preserved at the isolation regions in order to avoid the formation of pronounced shoulders. Furthermore, in some illustrative embodiments, additional mechanisms are implemented in order to avoid undue material loss, for instance upon removing a dielectric cap material and the like.
摘要:
When forming sophisticated high-k metal gate electrode structures in an early manufacturing stage on the basis of a silicon/germanium semiconductor alloy for adjusting appropriate electronic conditions in the channel region, the efficiency of a strain-inducing embedded semiconductor alloy, such as a silicon/germanium alloy, may be enhanced by initiating a crystal growth in the silicon material of the gate electrode structure after the gate patterning process. In this manner, the negative strain of the threshold voltage adjusting silicon/germanium alloy may be reduced or compensated for.
摘要:
The present disclosure provides manufacturing techniques in which sophisticated high-k metal gate electrode structures may be formed in an early manufacturing stage on the basis of a selectively applied threshold voltage adjusting semiconductor alloy. In order to reduce the surface topography upon patterning the deposition mask while still allowing the usage of well-established epitaxial growth recipes developed for silicon dioxide-based hard mask materials, a silicon nitride base material may be used in combination with a surface treatment. In this manner, the surface of the silicon nitride material may exhibit a silicon dioxide-like behavior, while the patterning of the hard mask may be accomplished on the basis of highly selective etch techniques.
摘要:
When forming sophisticated high-k metal gate electrode structures, a threshold adjusting semiconductor alloy may be formed on the basis of selective epitaxial growth techniques and a hard mask comprising at least two hard mask layers. The hard mask may be patterned on the basis of a plasma-based etch process, thereby providing superior uniformity during the further processing upon depositing the threshold adjusting semiconductor material. In some illustrative embodiments, one hard mask layer is removed prior to actually selectively depositing the threshold adjusting semiconductor material.
摘要:
When forming sophisticated gate electrode structures in an early manufacturing stage, the threshold voltage characteristics may be adjusted on the basis of a semiconductor alloy, which may be formed on the basis of low pressure CVD techniques. In order to obtain a desired high band gap offset, for instance with respect to a silicon/germanium alloy, a moderately high germanium concentration may be provided within the semiconductor alloy, wherein, however, at the interface formed with the semiconductor base material, a low germanium concentration may significantly reduce the probability of creating dislocation defects.