Abstract:
A method for applying disinfectant to the teats of a dairy livestock comprises moving a robotic arm along a track in relation to a rotary milking platform housing a dairy livestock and independent of any physical coupling between the robotic arm and the rotary milking platform. The rotary milking platform has a substantially circular perimeter. The track is positioned outside the perimeter of the rotary milking platform. At least a portion of the track is straight and offset in relation to the rotary milking platform. The robotic arm comprises an arm member operable to pivot about an axis that is parallel to the track, and a spray tool attached to one end of the arm member. The method further comprises extending the robotic arm between the hind legs of the dairy livestock while the rotary milking platform rotates such that the spray tool is located at a spray position from which it may discharge disinfectant to the teats of the dairy livestock.
Abstract:
A system includes a milking box stall of a size sufficient to accommodate a dairy livestock. The milking box stall comprises a front wall, a rear wall, a first side wall and a second side wall. The system further includes an equipment portion located adjacent to the rear wall. The equipment portion comprises a separation container for use with only the milking box stall and that is operable to receive milk from the dairy livestock to be discarded if it is determined to be bad milk. The equipment portion further comprises a receiver jar for use with only the milking box stall and that is operable to receive milk from the dairy livestock if it is determined to be good milk.
Abstract:
A method of operating a robotic attacher, includes suspending a robotic attacher from a rail and extending the robotic attacher between the legs of a dairy livestock. The method continues by attaching milking equipment to the dairy livestock using a gripping portion of the robotic attacher during a milking operation, wherein the gripping portion has a nozzle that is positioned away from a teat of the dairy livestock during the milking operation. The method concludes by rotating the gripping portion of the robotic attacher so that the nozzle is positioned to face a teat of the dairy livestock during a spraying operation.
Abstract:
A system for operating a robotic arm, comprises a controller and a robotic arm. The controller receives an indication that a stall of a rotary milking platform in which a dairy livestock is located has moved into an area adjacent a robotic arm that is detached from the rotary milking platform. The controller also determines whether a milking cluster is attached to the dairy livestock. The robotic arm is communicatively coupled to the controller and extends between the legs of the dairy livestock if the controller determines that the milking cluster is not attached to the dairy livestock. The robotic arm does not extend between the legs of the dairy livestock if the controller determines that the milking cluster is attached to the dairy livestock.
Abstract:
A system includes a camera, a controller and a robotic arm. The camera generates an image of an udder of a dairy livestock. The controller determines a position of the udder of the dairy livestock based at least in part upon the image. The controller further determines a spray position based at least in part upon the determined position of the udder of the dairy livestock. Determining the spray position includes processing the accessed image to determine a tangent at the rear of the udder and a tangent at the bottom of the udder. The spray position is a position relative to the intersection of the two tangents. The robotic arm is communicatively coupled to the controller and positions a spray tool at the spray position.
Abstract:
A method comprises extending a robotic attacher under a dairy livestock positioned in a milking stall, wherein the robotic attacher comprises a nozzle that is positioned generally on the bottom of the robotic attacher during a first operation. The method further comprises rotating the robotic attacher during a second operation such that the nozzle is positioned generally on the top of the robotic attacher.
Abstract:
A robotic attacher comprises a gripping portion, a vision system positioned on a first surface of the gripping portion, and at least one nozzle positioned on a second surface of the gripping portion. The gripping portion is rotates about a longitudinal axis such that during a first time, the vision system is positioned generally on the top of the gripping portion, and during a second time, the nozzle is positioned generally on the top of the gripping portion.
Abstract:
A spray tool coupled to a robotic arm includes a linear member, a first spray nozzle and a second spray nozzle. The linear member rotates about an axis that is perpendicular to the robotic arm. The linear member has a perimeter that lies within an outer perimeter of the robotic arm when the robotic arm extends between the legs of a dairy livestock. The first spray nozzle is coupled to the linear member proximate a first end of the linear member. The second spray nozzle is coupled to the linear member proximate a second end of the linear member.
Abstract:
A robotic attacher comprises a main arm, a supplemental arm coupled to the main arm, and a gripping portion coupled to the supplemental arm. The gripping portion is operable to rotate such that at a first time, a nozzle is positioned generally on the bottom of the gripping portion, and at a second time, the nozzle is positioned generally on the top of the gripping portion.
Abstract:
A method comprises receiving a flow of milk at an inlet of a manifold. The inlet comprises a first end coupled to a hose that receives a flow of milk from a teat cup and a second end terminating in a chamber of the manifold. The manifold comprises one or more other inlets and a plurality of outlets. The plurality of outlets includes one or more milk collector outlets and one or more drain outlets. The method proceeds by causing the flow of milk to be directed to a corresponding milk collector outlet by causing a shut-off valve corresponding to the inlet to open, and by causing a drain valve corresponding to the inlet to close. The method concludes by causing the flow of milk to be directed to a corresponding drain outlet by causing the drain valve corresponding to the inlet to open.