摘要:
A method of manufacturing a display substrate comprises forming a thin-film transistor (TFT) on a silicon wafer, transferring the TFT from the silicon wafer onto a base substrate using a stamp unit and forming a pixel electrode electrically connected to the TFT.
摘要:
The present invention relates to a display device including a substrate having a display area, a first electrode disposed on the substrate to receive a first voltage, a second electrode disposed on the substrate to receive a second voltage having an opposite polarity to that of the first voltage, an insulating layer disposed on the first electrode and the second electrode, and an isolated member disposed on the insulating layer and electrically isolated, wherein an induction charge is generated in the isolated member by application of the first voltage and the second voltage, and wherein light transmittance is controlled according to the application of the first and second voltages.
摘要:
A method of manufacturing a display substrate comprises forming a thin-film transistor (TFT) on a silicon wafer, transferring the TFT from the silicon wafer onto a base substrate using a stamp unit and forming a pixel electrode electrically connected to the TFT.
摘要:
An electrophoretic display and a method for driving thereof are disclosed. Some embodiments provide an electrophoretic display comprising: (a) a first electrode; (b) a second electrode; (c) an electrophoretic member between the first and second electrodes, the electrophoretic member comprising: first particles each of which carries a first charge, second particles each of which carries a second charge, and third particles each of which carries a third charge, the first, second and third charges being different from each other; and a dispersion medium for distributing the first, second and third particles. The electrophoretic display comprises circuitry for applying at least six different driving voltages between the first and second electrodes for selectively moving the first, second and third particles relative to at least the first electrode to display different colors. Accordingly, many colors can be represented.
摘要:
A method of converting image signals for a display device including six-color subpixels is provided, which includes: classifying three-color input image signals into maximum, middle, and minimum; decomposing the classified signals into six-color components; determining a maximum among the six-color components; calculating a scaling factor; and extracting six-color output signals.
摘要:
A touch screen display device includes a common electrode, a base substrate disposed opposite to the common electrode, a display signal line formed on the base substrate, a plurality of pixel electrodes, a touch position sensing part formed between the base substrate and the pixel electrodes, the touch position sensing part sensing a change of electrostatic capacitance formed between the common electrode and the touch position sensing part, and a display layer disposed between the common electrode and the pixel electrodes. The display layer includes a plurality of micro capsules comprising positively charged pigment particles and negatively charged pigment particles.
摘要:
In a method of fabricating a thin film transistor array substrate for a liquid crystal display, a gate line assembly is formed on a substrate with a chrome-based under-layer and an aluminum alloy-based over-layer while proceeding in the horizontal direction. The gate line assembly has gate lines, and gate electrodes, and gate pads. A gate insulating layer is deposited onto the insulating substrate such that the gate insulating layer covers the gate line assembly. A semiconductor layer and an ohmic contact layer are sequentially formed on the gate insulating layer. A data line assembly is formed on the ohmic contact layer with a chrome-based under-layer and an aluminum alloy-based over-layer. The data line assembly has data lines crossing over the gate lines, source electrodes, drain electrodes, and data pads. A protective layer is deposited onto the substrate, and patterned to thereby form contact holes exposing the drain electrodes, the gate pads, and the data pads. The sidewall of the under-layers for the gate line assembly and the data line assembly is exposed through the contact holes. An IZO-based layer is deposited onto the substrate, and patterned to thereby form pixel electrodes, subsidiary gate pads, and subsidiary data pads. The pixel electrodes are connected to the sidewall of the drain electrodes, and the subsidiary gate and data pads are connected to the sidewall of the gate and the data pads.
摘要:
The present invention provides a TFT array panel having a transmissive region and a reflective region. A transmissive electrode is disposed in the transmissive region. The first reflective electrode connected to the transmissive electrode is disposed on the reflective region. The second reflective electrode separated from the transmissive electrode and the first reflective region is formed in the reflective region. A first conductor is connected to at least one of the transmissive electrode and the first reflective electrode. A second conductor is connected to the second reflective electrode. At least one of the transmissive electrode, the first reflective electrode and the first conductor overlaps at least one of the second reflective electrode and the second conductor.
摘要:
A shift register comprises stages connected to each other, in which each stage generates an output signal in response to any one of clock signals and an output from each of two different stages. Each clock signal has a duty ratio of less than 50% and a different phase from each of the other clock signals. A display device includes pixels, signal lines, and first and second shift registers each having stages connected to each other and generating output signals to signal lines. Each stage includes a set terminal, a reset terminal, a clock terminal, and first and second output terminals.
摘要:
Pixels of red, blue and green are sequentially arranged in the row. The red and green pixels are alternately arranged in the column while the blue pixels being repeatedly arranged in the column. The four red and green pixels surrounding the two blue pixels at the two neighboring pixel rows face each other around the blue pixels. Gate lines are arranged at the respective rows to transmit scanning signals. Data lines cross over the gate lines in an insulating manner, and are arranged at the respective columns to transmit picture signals. Pixel electrodes and thin film transistor are formed at respective pixels. The blue pixel has the same area as or an area smaller than the red and green pixels. The pixel electrodes are overlapped with the gate or the data lines via a passivation layer of low dielectric organic material or an insulating material such as SiOC, SiOF.