摘要:
In the non-aqueous electrolyte secondary battery provided by the present invention, at or near the positive electrode constituting the non-aqueous electrolyte secondary battery, overcharge-reactive multimers including dimers to higher-order multimers formed by polymerization of an overcharge-reactive compound are present in a larger amount by mole than the overcharge-reactive compound remaining unpolymerized.
摘要:
A lithium secondary battery of the present invention has a positive electrode is provided with a positive electrode mix layer that includes a positive electrode active material and a conductive material. The positive electrode mix layer has two peaks, large and small, of differential pore volume over a pore size ranging from 0.01 μm to 10 μm in a pore distribution curve measured by a mercury porosimeter. A pore size of the smaller peak B of the differential pore volume is smaller than a pore size of the larger peak A of the differential pore volume.
摘要:
To provide a proton conducting material with which an electrode and a fuel cell capable of functioning in a stable manner even without humidification in a temperature range from room temperature to about 200° C. can be achieved. The proton conducting material includes a porous structural material having pores and a heterocyclic organic compound having proton conductivity. The organic compound contained inside the pores has a crystallite size D of 50 nm or less.
摘要:
An electrically conducting structure includes: an electrically conductive bar member; a frame member supporting the bar member; and a conducting metal plate, provided with a base portion for mounting the conducting metal plate to the frame member and provided with a contact portion, extending out from the base portion and bending to make contact with a side face of the bar member.
摘要:
An assembled battery comprises mainly multiple non-aqueous secondary cells A and at least one electric device B for voltage detection containing a non-aqueous electrolyte connected to the multiple non-aqueous secondary cells A in series. When a difference in the non-aqueous secondary cell A between a voltage per cell (VA1) at a depth of discharge of 25% and a voltage per cell (VA2) at a depth of discharge of 75% is designated as ΔVA, and a difference in the electric device B between a voltage per cell (VB1) at a depth of discharge equivalent to the depth of discharge of 25% of the non-aqueous secondary cell A and a voltage per cell (VB2) at a depth of discharge equivalent to the depth of discharge of 75% of the non-aqueous secondary cell A is designated as ΔVB, the ΔVB of electric device B is greater than the ΔVA of non-aqueous secondary cell A.
摘要:
A secondary battery has a so-called tabless structure. An electrode group (4) includes an exposed end (1a) and a body portion (5). In the exposed end (1a), a current collector is exposed. In the body portion (5), an active material is provided on a surface of the current collector. A current collector plate (10) includes a principal surface (11) to which the electrode group (4) is connected, and projections (13) provided on the periphery of the principal surface (11). Moreover, in a direction in which a positive electrode plate (1), a porous insulating layer (3) and a negative electrode plate (2) are sequentially arranged, a width of the current collector plate (10) is equal to or smaller than a width of the body portion (5). Furthermore, the projections (13) sandwich the exposed end (1a) in a direction perpendicular to a longitudinal direction of the exposed end (1a).
摘要:
A process of manufacturing segments, an anisotropic direction of which is continuously changed in a plane vertically by a uniform magnetic field maintained in a constant direction and a process of arranging a plurality of segments on a circumference, extruding the segments in a ring shape by rheology based on the viscous deformation of the segments, from one thrust-direction end surface of the segments, and subsequently compressing the segments from both thrust-direction end surfaces of the segments are necessarily included. A ring magnet, anisotropy of which is controlled in a continuous direction, is provided, and a source for generating a static magnetic field has energy density (BH) max≧160 to 180 kJ/m3.
摘要:
A battery casing 10 includes a plurality of cylindrical accommodation parts 12a to 12d accommodating a plurality of electrode assemblies 20, and connecting parts 13a to 13c connecting the accommodation parts 12a to 13d adjacent to each other. The inner circumferences of the accommodation parts 12a to 12d have substantially the same shape as the outer circumferences of the electrode assemblies. The connecting parts 13a to 13c are formed along the side surfaces of the accommodation parts 12a to 12d. Each electrode assembly 20 is formed by winding a positive electrode plate 21 and a negative electrode plate 22 with a separator 23 interposed therebetween to be in a cylindrical shape. The plurality of electrode assemblies 20 are accommodated in the accommodation parts 12a to 12d with substantially no gap left.
摘要:
A motor generally has a contradictory relation between decrease of cogging torque and increase of torque density. To overcome this problem, continuous direction control is provided for anisotropy with modification of magnetic poles so that the average absolute value of differences between Mθ and 90×sin [φ{2π/(360/p)}] is set to be 3° or less, where Mθ is a direction of anisotropy with respect to a radial tangent line of a magnetic pole plane, φ is a mechanical angle, and p is the number of pole pairs.
摘要:
A fuel cell system, comprising a fuel cell having an anode, a cathode, and an electrolyte interposed therebetween and a purification device having a catalyst layer purifying substances discharged from the anode. The fuel cell system is characterized in that the purification device comprises a porous sheet having a catalyst layer and two flow passages disposed on both sides of the porous sheet, an inlet to which the substances discharged from the anode is led is formed in one flow passage, an inlet to which air is led and an outlet are formed in the other flow passage, and the substances discharged from the anode are discharged from the outlet after being purified through the porous sheet.