摘要:
A fuel cell system includes: a fuel cell including an anode, a cathode, and an electrolyte interposed between the anode and the cathode; and a purifying apparatus including a catalyst layer that purifies an effluent discharged from the anode. The purifying apparatus has a porous sheet including the catalyst layer and two flow paths disposed on both sides thereof. One of the flow paths has an inlet into which the effluent discharged from the anode is introduced, and the other flow path has an inlet into which air is introduced and an outlet. The effluent discharged from the anode is passed through the porous sheet for purification and then discharged from the outlet.
摘要:
A fuel cell system, comprising a fuel cell having an anode, a cathode, and an electrolyte interposed therebetween and a purification device having a catalyst layer purifying substances discharged from the anode. The fuel cell system is characterized in that the purification device comprises a porous sheet having a catalyst layer and two flow passages disposed on both sides of the porous sheet, an inlet to which the substances discharged from the anode is led is formed in one flow passage, an inlet to which air is led and an outlet are formed in the other flow passage, and the substances discharged from the anode are discharged from the outlet after being purified through the porous sheet.
摘要:
A fuel cell system includes: a dilute tank that stores an aqueous solution of liquid fuel and supplies the solution to the anode of a fuel cell; a fuel tank connected to the dilute tank via a first controlling section; a water tank connected to the dilute tank via a second controlling section; and controlling means including a current detector which measures the amount of the fuel consumed by the fuel cell from the amount of power generation. The controlling means controls the first controlling section based on the measured amount of fuel consumption and further includes correcting means for measuring a component of a gas discharged from the cathode, calculating the amount of the fuel which has crossed over from the anode to the cathode based on the measured component, and correcting the measured amount of fuel consumption based on the calculated amount of fuel crossover.
摘要:
In order to prevent the crossover of an organic fuel such as methanol in a fuel cell and to exhibit excellent electricity generation characteristics without impairing the utilization efficiency of the fuel, at least either of (1) a discontinuous catalyst layer being formed on a surface of an anode catalyst layer and having a higher density (existence probability) of platinum type catalyst than the anode catalyst layer and (2) an electrolyte polymer layer is formed at the interface between the anode catalyst layer and a polymer electrolyte membrane.
摘要:
A fuel container for storing a fuel liquid for a fuel cell has a double wall structure including an inner container for storing a fuel liquid and an outer container for housing the inner container, and a material capable of retaining the fuel between the inner container and the outer container. A fuel cell pack includes a fuel cell and a fuel container for storing a fuel liquid for the fuel cell. The fuel cell pack includes a double wall exterior casing having an inner casing for housing the fuel cell and the fuel container and an outer casing for housing the inner casing, and a material capable of retaining the fuel between the inner casing and the outer casing.
摘要:
In order to prevent the crossover of an organic fuel such as methanol in a fuel cell and to exhibit excellent electricity generation characteristics without impairing the utilization efficiency of the fuel, at least either of (1) a discontinuous catalyst layer being formed on a surface of an anode catalyst layer and having a higher density (existence probability) of platinum type catalyst than the anode catalyst layer and (2) an electrolyte polymer layer is formed at the interface between the anode catalyst layer and a polymer electrolyte membrane.
摘要:
To prevent the flooding phenomenon at the cathode in a unit cell where the temperature is relatively low or the supply of air is small, a fuel cell stack includes at least three flat unit cells stacked with separators interposed therebetween, the unit cells comprising an anode, a cathode and an electrolyte membrane sandwiched therebetween, and having an oxidant channel formed on the surface of the separator adjacent to the cathode, and the anode and the cathode comprising a catalyst layer attached to the electrolyte membrane and a diffusion layer, wherein the cross-sectional area of the inlet side of the oxidant channel, the area of the cathode catalyst layer, the thickness of the electrolyte membrane or the amount of a water repellent contained in the combination of the cathode and the oxidant channel is the largest in at least one of the unit cells at the ends of the stack.
摘要:
To prevent the flooding phenomenon at the cathode in a unit cell where the temperature is relatively low or the supply of air is small, a fuel cell stack includes at least three flat unit cells stacked with separators interposed therebetween, the unit cells comprising an anode, a cathode and an electrolyte membrane sandwiched therebetween, and having an oxidant channel formed on the surface of the separator adjacent to the cathode, and the anode and the cathode comprising a catalyst layer attached to the electrolyte membrane and a diffusion layer, wherein the cross-sectional area of the inlet side of the oxidant channel, the area of the cathode catalyst layer, the thickness of the electrolyte membrane or the amount of a water repellent contained in the combination of the cathode and the oxidant channel is the largest in at least one of the unit cells at the ends of the stack.
摘要:
A method for activating a direct oxidation fuel cell including an anode, a cathode, and a proton-conductive electrolyte membrane interposed between the anode and the cathode is provided. The anode and the cathode each have a catalyst layer on a face in contact with the proton-conductive electrolyte membrane. This method activates the fuel cell by passing a current through the fuel cell from an external power source, with the positive electrode and the negative electrode of the external power source connected to the anode and the cathode of the fuel cell, respectively, while supplying an organic fuel and an inert gas to the anode and the cathode, respectively.
摘要:
A method for activating a direct oxidation fuel cell including an anode, a cathode, and a proton-conductive electrolyte membrane interposed between the anode and the cathode is provided. The anode and the cathode each have a catalyst layer on a face in contact with the proton-conductive electrolyte membrane. This method activates the fuel cell by passing a current through the fuel cell from an external power source, with the positive electrode and the negative electrode of the external power source connected to the anode and the cathode of the fuel cell, respectively, while supplying an organic fuel and an inert gas to the anode and the cathode, respectively.