摘要:
An oxide semiconductor thin film transistor substrate includes a gate line and a gate electrode disposed on an insulating substrate, an oxide semiconductor pattern disposed adjacent to the gate electrode, a data line electrically insulated from the gate line, the data line and the gate line defining a display region, a first opening exposing a surface of the data line, a second opening exposing a surface of the oxide semiconductor pattern, and a drain electrode disposed on the first opening and a drain electrode pad, the drain electrode extending from the first opening to the second opening and electrically connecting the drain electrode pad and the oxide semiconductor pattern.
摘要:
A method for fabricating a non-volatile memory device includes alternately stacking a plurality of interlayer dielectric layers and a plurality of conductive layers over a substrate, etching the interlayer dielectric layers and the conductive layers to form a trench which exposes a surface of the substrate forming a first material layer over a resulting structure in which the trench is formed, forming a second material layer over the first material layer, removing portions of the second material layer and the first material layer formed on a bottom of the trench to expose the surface of the substrate, removing the second material layer, and burying a channel layer within the trench in which the second material layer is removed.
摘要:
A mask that is capable of forming a thin-film transistor (TFT) with improved electrical characteristics is presented. The mask includes a drain mask pattern, a source mask pattern and a light-adjusting pattern. The drain mask pattern blocks light for forming a drain electrode. The source mask pattern blocks light for forming a source electrode and faces the drain mask pattern. A distance between the drain and source mask patterns is no more than the resolution of an exposing device. The light-adjusting pattern is formed between end portions of the source mask pattern and the drain mask pattern to block at least some light from entering a space between the source and drain mask patterns.
摘要:
Provided are an apparatus and a method for injecting liquid crystal into a hollow optic fiber. The apparatus includes: a first holder and a second holder each of which has a fluid passage for holding corresponding one end of the hollow optic fiber to be communicated with the fluid passage a container connected to a tube disposed with a valve at the fluid passage of the second holder and storing liquid crystal; an air supplying device connected to the first holder and the container through tubes having a plurality of valves to select an air passage for making the hollow optic fiber vacuous by sucking air out of the hollow optic fiber and forcedly injecting liquid crystal into the hollow optic fiber by supplying an air pressure.
摘要:
Provided are an apparatus and a method for injecting liquid crystal into a hollow optic fiber. The apparatus includes: a first holder and a second holder each of which has a fluid passage for holding corresponding one end of the hollow optic fiber to be communicated with the fluid passage a container connected to a tube disposed with a valve at the fluid passage of the second holder and storing liquid crystal; an air supplying device connected to the first holder and the container through tubes having a plurality of valves to select an air passage for making the hollow optic fiber vacuous by sucking air out of the hollow optic fiber and forcedly injecting liquid crystal into the hollow optic fiber by supplying an air pressure.
摘要:
A display apparatus includes a substrate including a display area having a transmissive region and a reflective region and a peripheral area surrounding the display area, a gate line and a data line formed on the substrate and crossing each other to define a pixel area in the display area, a gate electrode and a common electrode, wherein the gate electrode branches from the gate line in the pixel area and the common electrode is spaced apart from the gate electrode, a source electrode and a drain electrode formed on the gate electrode, wherein the source electrode branches from the data line and the drain electrode is spaced apart from the source electrode, and a reflective electrode formed in the pixel area by extending the drain electrode into the pixel area and provided with at least one opening to define the transmissive region and the reflective region.