Abstract:
A portable detection system for allergic diseases includes a filtration-based inspection module and a reader module. The filtration-based inspection module includes an FPW sensor and a liquid sample filtration apparatus, wherein the liquid sample filtration apparatus includes an injection opening, a passage module, a filtering membrane and a gathering aperture. The injection opening is in communication with the gathering aperture. The FPW sensor comprises a frame body, a carrier and a sensing chip having an accommodating slot in communication with the gathering aperture. The carrier comprises a plurality of conductive terminals, and the conductive terminals are electrically connected with the sensing chip. The reader module comprises a connection slot capable of being inserted by the conductive terminals of the carrier.
Abstract:
An image coding method for run-length coding (RLC), including quantizing a coefficient string representing a plurality of pixel values to generate a first quantization coefficient string, determining a cutoff quantization coefficient in the first quantization coefficient string, discarding a part of quantization coefficients of the first quantization coefficient string according to the cutoff quantization coefficient, and forming remaining quantization coefficients of the first quantization coefficient string as a second quantization coefficient string, and performing image coding to the second quantization coefficient string with the RLC.
Abstract:
An easy LSB tuning method is proposed for a digitally controlled DC-DC converter to increase the DC gain of the digitally controlled DC-DC converter under conditions of no-limit-cycle and a finite bit number to reduce steady-state error of the digitally controlled DC-DC converter. The LSB of one or more of the coefficients in the denominator of the discrete-time domain transfer function of the digital compensator in the digitally controlled DC-DC converter is so tuned that the sum of all coefficients in the denominator of the discrete-time domain transfer function becomes zero. Therefore, the influence of round-off effect on the coefficients of the digital compensator is mitigated.
Abstract:
This invention provides a paper-blocking mechanism and paper processing device using the same. The paper-blocking mechanism comprises a paper holder, a shaft connecting to a power source and driving a paper feeding portion, a restriction portion disposed on the shaft and moving between a first position and second position when the shaft is rotating, a paper blocking portion comprising a paper blocking plate and coupled to the paper processing device, wherein the restriction portion abuts the paper blocking plate to cause the paper holder in a paper blocking position when the restriction portion is in the first position, and the restriction portion doesn't abut the paper blocking plate to cause the paper holder in a paper feeding position when the restriction portion is in the second position.
Abstract:
An exemplary liquid crystal display (100) includes gate lines (122), and data lines (123) cooperatively defining pixel units. Each pixel unit includes a first thin film transistor (TFT) (125), a second TFT (126), a first pixel electrode (127), and a second pixel electrode (128). Gate electrodes of the two TFTs are connected to one of the gate lines. A source electrode of the first TFT is connected to one of the data lines. A drain electrode of the first TFT is connected to the first pixel electrode. A source electrode of the second TFT is connected to the first pixel electrode. A drain electrode of the second TFT is connected to the second pixel electrode. A channel width/length ratio of the second TFT is such that a voltage of the drain electrode thereof is less than a voltage of the source electrode thereof when the second TFT is switched on.
Abstract:
A LED device of the present invention includes a substrate comprising a Cu and/or Al; a diamond-like carbon layer disposed on the substrate; an electric circuit formed on the diamond-like carbon layer; and a LED chip electrically connected to the electric circuit. The LED can be used as a light source of back light of liquid crystal display.
Abstract:
An exemplary liquid crystal display (100) includes gate lines (122), and data lines (123) cooperatively defining pixel units. Each pixel unit includes a first thin film transistor (TFT) (125), a second TFT (126), a first pixel electrode (127), and a second pixel electrode (128). Gate electrodes of the two TFTs are connected to one of the gate lines. A source electrode of the first TFT is connected to one of the data lines. A drain electrode of the first TFT is connected to the first pixel electrode. A source electrode of the second TFT is connected to the first pixel electrode. A drain electrode of the second TFT is connected to the second pixel electrode. A channel width/length ratio of the second TFT is such that a voltage of the drain electrode thereof is less than a voltage of the source electrode thereof when the second TFT is switched on.
Abstract:
A portable tire pump includes a small refillable gas bottle and a control device connected to the gas bottle. The control device includes an inlet channel with one end connected to the connecting end, an outlet channel with one end connected to an air injecting tub, and an airflow controller connected with the other ends of the inlet and the outlet channels to conduct and control air flowing from the gas bottle to pump into a tire.
Abstract:
A liquid crystal display device (700) has a liquid crystal panel (701) and a backlight module (70) under the liquid crystal panel for providing light beams to the liquid crystal panel. The backlight module includes at least one light source (720), and a light guide plate (711). The light guide plate has an incident surface (710) for receiving light beams from the at least one light source, an emitting surface (712) adjacent the incident surface, and a bottom surface (713) opposite to the emitting surface, at least one brightness enhancing pattern being provided at the bottom surface. The at least one brightness enhancing pattern has a plurality of brightness enhancing element (714), each of which is an arcuate and generally subtending the at least one light source.
Abstract:
A driving member securing device for a hand tool includes a control member which has a skirt portion and a flange extends from an inner periphery of a central hole of the control member. The flange has a plurality of projections. The hand tool has a toothed wheel rotatably received in the head of the hand tool and an engaging hole is defined through the toothed wheel. The driving member has an insertion which is inserted into the engaging hole of the toothed wheel and includes a plurality of ridges and grooves. A groove is defined in the ridges and the grooves so that the flange of the control member is movably engaged with the groove to secure the driving member.