摘要:
A perpendicular magnetic recording medium adapted for high recording density and high data recording rate comprises a non-magnetic substrate having at least one surface with a layer stack formed thereon, the layer stack including a perpendicular recording layer containing a plurality of columnar-shaped magnetic grains extending perpendicularly to the substrate surface for a length, with a first end distal the surface and a second end proximal the surface, wherein each of the magnetic grains has: (1) a gradient of perpendicular magnetic anisotropy field Hk extending along its length between the first end and second ends; and (2) predetermined local exchange coupling strengths along the length.
摘要:
A perpendicular magnetic recording medium adapted for high recording density and high data recording rate comprises a non-magnetic substrate having at least one surface with a layer stack formed thereon, the layer stack including a perpendicular recording layer containing a plurality of columnar-shaped magnetic grains extending perpendicularly to the substrate surface for a length, with a first end distal the surface and a second end proximal the surface, wherein each of the magnetic grains has: (1) a gradient of perpendicular magnetic anisotropy field Hk extending along its length between the first end and second ends; and (2) predetermined local exchange coupling strengths along the length.
摘要:
Data storage systems are provided. Data storage systems illustratively include a writing element and a recording medium. In some embodiments, the writing element generates first and second magnetization fields that respectively record first and second magnetization patterns to the recording medium. In some embodiments, the writing element is de-saturated between recording the first and second magnetization patterns.
摘要:
An anti-ferromagnetically coupled, granular-continuous (“AFC-GC”) magnetic recording medium having increased thermal stability, writability, and signal-to-medium noise ratio (“SMNR”), comprising a layer stack including, in sequence from a surface of a non-magnetic substrate: (a) a continuous ferromagnetic stabilizing layer; (b) a non-magnetic spacer layer; and (c) a granular ferromagnetic recording layer; wherein: (i) the continuous ferromagnetic stabilizing and granular ferromagnetic recording layers are anti-ferromagnetically coupled across the non-magnetic spacer layer, the amount of anti-ferromagnetic coupling preselected to ensure magnetic relaxation after writing; (ii) lateral interactions in the granular, ferromagnetic recording layer are substantially completely eliminated or suppressed; and (iii) the exchange coupling strength in the continuous, ferromagnetic stabilizing layer is preselected to be slightly larger than the strength of the anti-ferromagnetic coupling provided by the non-magnetic spacer layer to thereby enhance thermal stability of the recording bits.
摘要:
A perpendicular magnetic recording medium adapted for high recording density and high data recording rate comprises a non-magnetic substrate having at least one surface with a layer stack formed thereon, the layer stack including a perpendicular recording layer containing a plurality of columnar-shaped magnetic grains extending perpendicularly to the substrate surface for a length, with a first end distal the surface and a second end proximal the surface, wherein each of the magnetic grains has: (1) a gradient of perpendicular magnetic anisotropy field Hk extending along its length between the first end and second ends; and (2) predetermined local exchange coupling strengths along the length.
摘要:
A perpendicular magnetic recording medium adapted for high recording density and high data recording rate comprises a non-magnetic substrate having at least one surface with a layer stack formed thereon, the layer stack including a perpendicular recording layer containing a plurality of columnar-shaped magnetic grains extending perpendicularly to the substrate surface for a length, with a first end distal the surface and a second end proximal the surface, wherein each of the magnetic grains has: (1) a gradient of perpendicular magnetic coercivity Hk extending along its length between the first end and second ends; and (2) predetermined local exchange coupling strengths along the length.
摘要翻译:适用于高记录密度和高数据记录速率的垂直磁记录介质包括具有至少一个具有在其上形成层叠层的表面的非磁性基板,该层堆叠包括垂直记录层,该垂直记录层包含多个柱状磁性颗粒 垂直于衬底表面延伸一段长度,第一端远离表面,靠近表面的第二端,其中每个磁性颗粒具有:(1)垂直磁矫顽磁力梯度H SUB >沿其长度在第一端部和第二端部之间延伸; 和(2)沿着长度的预定局部交换耦合强度。
摘要:
In some examples, a system comprising a data storage member including a magnetic storage medium, the magnetic storage medium having a plurality of magnetic bit domains aligned on at least one data track, where a transition boundary between respective magnetic bit domains defines a transition curvature. The system may further comprise a magnetic read head including a first shield layer, a second shield layer, and a read sensor stack provided proximate to the first and second shield layers, where the magnetic read head senses a magnetic field of each of the plurality of magnetic bit domains according to a read playback sensitivity function. In some examples, the shield layers and read sensor stack may be configured to provide a reader playback sensitivity function that substantially corresponds to the shape of the respective magnetic bit domains.
摘要:
A perpendicular write head, the write head having an air bearing surface, the write head including a magnetic write pole, wherein at the air bearing surface, the write pole has a trailing side, a leading side that is opposite the trailing side, and first and second sides; side gaps, wherein the side gaps are proximate the write pole along the first and second side edges; and side shields proximate the side gaps, wherein the side shields have gap facing surfaces and include at least one set of alternating layers of magnetic and non-magnetic materials, wherein only one kind of material makes up the gap facing surfaces at the air bearing surfaces.
摘要:
A magnetic recording head comprises a write pole having a pole tip adjacent to an air bearing surface, a return pole, an optical near field transducer positioned adjacent the pole tip and an air bearing surface for exposing a portion of a magnetic storage medium to high energy radiation. The energy is directly provided to the near field transducer by a ridge waveguide with tapered coupling elements, by a two dimensional straight or curved waveguide with a beveled end with a metal/dielectric coating for delivering energy to the near field transducer, or by a curved waveguide. The waveguide with tapered coupling elements or with beveled end can be fabricated by means of conventional wafer processing.
摘要:
An apparatus includes a waveguide configured to deliver light to a transducer region. The apparatus also includes a plasmonic transducer that has two metal elements configured as side-by-side plates on a substrate-parallel plane with a gap therebetween. The gap is disposed along the substrate-parallel plane and has an input end disposed proximate the transducer region and an output end. The transducer is configured to provide a surface plasmon-enhanced near-field radiation pattern proximate the output end in response to the light received by the waveguide.