Abstract:
The invention relates to a heating and/or cooling system (2) for a motor vehicle with a combustion engine (4) and a catalytic converter (8) arranged in the exhaust gas path (6) of the combustion engine (4), comprising a burner (10) attached before the catalytic converter (8) to the exhaust gas path (6) as well as a heat exchanger (12) for transmitting heat generated in the burner (10) to a heating and/or cooling circuit (28) of the motor vehicle. It is proposed that the heat exchanger (12) be arranged behind the catalytic converter (8) in the exhaust gas path (6) of the combustion engine (4) and can be acted upon through the catalytic converter (8) with hot combustion gases from the burner (10).
Abstract:
A sorption cooling system for providing cooled air to the cabin of a vehicle. The sorption cooling system includes an evaporator, a condenser adapted to fluidly communication with the evaporator, and a plurality of adsorbent beds adapted for fluid communication with the condenser and the evaporator. Each adsorbent bed includes a fluid impermeable casing, desiccant sheets having apertures therethrough, a refrigerant flow path for flowing a refrigerant proximal to a first side of the desiccant sheets, and a coolant flow path for flowing a coolant fluid proximal to a second side of the desiccant sheets. The apertures are a portion of one of the refrigerant and coolant flow paths.
Abstract:
A sorption cooling system for providing cooled air to the cabin of a vehicle. The sorption cooling system includes an evaporator, a condenser adapted to fluidly communication with the evaporator, and a plurality of adsorbent beds adapted for fluid communication with the condenser and the evaporator. Each adsorbent bed includes a fluid impermeable casing, desiccant sheets having apertures therethrough, a refrigerant flow path for flowing a refrigerant proximal to a first side of the desiccant sheets, and a coolant flow path for flowing a coolant fluid proximal to a second side of the desiccant sheets. The apertures are a portion of one of the refrigerant and coolant flow paths.
Abstract:
In an adsorption-type refrigerating apparatus, an adsorber includes therein an adsorbent having a temperature-dependent characteristic in which an amount adsorbed in an adsorption step is larger than an amount adsorbed in a desorption step, even when a vapor pressure rate in the adsorption step is equal to or lower than a vapor pressure rate in the desorption step. Therefore, even when the cooling temperature of outside air for cooling the adsorbent increases, a sufficient cooling capacity can be obtained. In addition, a difference between the amount adsorbed in the adsorption step and the amount adsorbed in the desorption step can be made larger.
Abstract:
In an adsorption-type refrigerating apparatus, an adsorber includes therein an adsorbent having a temperature-dependent characteristic in which an amount adsorbed in an adsorption step is larger than an amount adsorbed in a desorption step, even when a vapor pressure rate in the adsorption step is equal to or lower than a vapor pressure rate in the desorption step. Therefore, even when the cooling temperature of outside air for cooling the adsorbent increases, a sufficient cooling capacity can be obtained. In addition, a difference between the amount adsorbed in the adsorption step and the amount adsorbed in the desorption step can be made larger.
Abstract:
A motor vehicle with a self-powered air conditioner system. An absorption type air conditioning unit is configured to air condition at least a portion of cab space of the motor vehicle. The unit has at least one electric powered component. There is a generator located outside the cab space for vaporizing a refrigerant. There is a condenser for condensing the refrigerant to produce a condensate, and an evaporator configured to remove heat from the cab space by a process of evaporation of the condensate. There is a combustion unit configured to burn fuel from the fuel tank. The combustion unit provides heat to a hot surface. A plurality of thermoelectric modules is mounted in thermal contact with the hot surface. A heat sink is cooled by the cooling water system. The heat sink is positioned so that it is in thermal contact with said plurality of thermoelectric modules. A temperature difference is produce across the modules to permit them to generate electrical power, and an electric control circuit is configured to utilize electric power generated by the modules to power the at least one electric powered component. In a preferred embodiment, excess electric power is used to keep batteries of the motor vehicle charged up. In a preferred embodiment provision is made for hot water to be circulated from the combustion unit to the cab space to provide heat for the cab space when desired.
Abstract:
A heat absorption conversion system which, as a single- or multistage system for providing heat and/or refrigeration, has at least one absorber and/or resorber constructed as an absorption heat exchanger. Loads per unit area for mass transfer and heat exchange and the heat transfer coefficient resulting therefrom in the absorber and/or resorber are set to a value as high as possible. To achieve this performance, the heat absorption conversion system has at least one cooled (i.e. nonadiabotic) absorption heat exchanger as the absorber and/or resorber with, as additional components, at least one solution cooler and a pump. These components, together with the absorption heat exchanger, a connection line and a control valve, form a recirculation circuit. This heat absorption conversion system operates even at low heat input temperatures or decreased refrigeration temperatures or elevated cooling medium temperatures.
Abstract:
A ventilation system for an absorption refrigerator having a condenser and an absorber and located in a recreational vehicle. The ventilation system includes a generally vertical air passage in which the condenser and the absorber are located, a lower vent for the intake of ambient air into the air passage, an upper vent for exhausting heated air from the air passage, and an air assist system for forcing air flow through the air passage only when the temperature of the ambient air is too high for an efficient natural draft. The air assist system includes a blower positioned to promote airflow within the air passage over the condenser and the absorber, a temperature activated thermal switch positioned to sense ambient temperature and adapted to energize the blower only when the ambient temperature is above a predetermined value, and a power switch connected in series to the thermal switch to activate and deactivate the system. The power switch is preferably adapted to automatically activate and deactivate the system when the refrigerator is turned on and off respectively.
Abstract:
A desiccant tank storing desiccant is accommodated in a thermal insulation case, and a desiccant tank-side ventilation duct is formed between the desiccant tank and the thermal insulation case. Ventilation path change-over dampers are provided to switch a ventilation path of the desiccant tank-side ventilation duct to an interior heat release operation path or an exterior heat release operation path. A thermal insulation case accommodates a water tank storing water therein and connected with the desiccant tank through a connection pipe without using valves. A water tank-side ventilation duct is formed between the water tank and the thermal insulation case. Ventilation path change-over dampers are provided to switch a ventilation path of the water tank-side ventilation duct to an interior heat absorption/radiation operation path or an exterior heat absorption/radiation operation path.
Abstract:
The invention relates to a sorption method for air-conditioning vehicles, especially electric vehicles, and a device for working the method. To achieve rapid cooling or heating by means of vehicle air conditioning while achieving improved manufacturing, cost, and weight advantages, it is proposed that the sorption unit, composed of a storage container with sorbent, a supply container with sorbate, and a steam duct connecting the containers with one another, is evacuated only to perform an adsorption process employing a vacuum pump and is vented for desorption. The sorbent located in the storage container is traversed by hot air for desorption, said air, moistened with sorbate after passing through, being vented to the environment past the supply container after flowing through a vent line that branches off the steam duct.